Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
The aim of this paper is twofold. First, we give a fully geometric description of the HOMFLYPT homology of Khovanov and Rozansky. Our method is to construct this invariant in terms of the cohomology of various sheaves on certain algebraic groups, in the same spirit as the authors’ previous work on Soergel bimodules. All the differentials and gradings which appear in the construction of HOMFLYPT homology are given a geometric interpretation.
In fact, with only minor modifications, we can extend this construction to give a categorification of the colored HOMFLYPT polynomial, colored HOMFLYPT homology. We show that it is in fact a knot invariant categorifying the colored HOMFLYPT polynomial and that it coincides with the categorification proposed by Mackaay, Stošić and Vaz.
Webster, Benjamin 1 ; Williamson, Geordie 2
@article{GT_2017_21_5_a0, author = {Webster, Benjamin and Williamson, Geordie}, title = {A geometric construction of colored {HOMFLYPT} homology}, journal = {Geometry & topology}, pages = {2557--2600}, publisher = {mathdoc}, volume = {21}, number = {5}, year = {2017}, doi = {10.2140/gt.2017.21.2557}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.2557/} }
TY - JOUR AU - Webster, Benjamin AU - Williamson, Geordie TI - A geometric construction of colored HOMFLYPT homology JO - Geometry & topology PY - 2017 SP - 2557 EP - 2600 VL - 21 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.2557/ DO - 10.2140/gt.2017.21.2557 ID - GT_2017_21_5_a0 ER -
Webster, Benjamin; Williamson, Geordie. A geometric construction of colored HOMFLYPT homology. Geometry & topology, Tome 21 (2017) no. 5, pp. 2557-2600. doi : 10.2140/gt.2017.21.2557. http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.2557/
[1] Théorie des topos et cohomologie étale des schémas, Tome 3 : Exposés IX–XIX (SGA 43 ), 305, Springer (1973)
, , ,[2] Khovanov’s homology for tangles and cobordisms, Geom. Topol. 9 (2005) 1443 | DOI
,[3] Koszul duality patterns in representation theory, J. Amer. Math. Soc. 9 (1996) 473 | DOI
, , ,[4] Equivariant sheaves and functors, 1578, Springer (1994) | DOI
, ,[5] Faisceaux pervers, from: "Analysis and topology on singular spaces, I", Astérisque 100, Soc. Math. France (1982) 5
, , ,[6] Weight structures and motives; comotives, coniveau and Chow-weight spectral sequences, and mixed complexes of sheaves: a survey, preprint (2009)
,[7] Equivariant cohomology and equivariant intersection theory, from: "Representation theories and algebraic geometry" (editors A Broer, G Sabidussi), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 514, Kluwer Acad. (1998) 1 | DOI
,[8] Théorie de Hodge, II, Inst. Hautes Études Sci. Publ. Math. (1971) 5
,[9] Cohomologie étale (SGA 4), 569, Springer (1977)
,[10] La conjecture de Weil, II, Inst. Hautes Études Sci. Publ. Math. (1980) 137
,[11] Hecke algebra representations of braid groups and link polynomials, Ann. of Math. 126 (1987) 335 | DOI
,[12] Triply-graded link homology and Hochschild homology of Soergel bimodules, Internat. J. Math. 18 (2007) 869 | DOI
,[13] Matrix factorizations and link homology, II, Geom. Topol. 12 (2008) 1387 | DOI
, ,[14] Weil conjectures, perverse sheaves and l–adic Fourier transform, 42, Springer (2001) | DOI
, ,[15] Transformation de Fourier, constantes d’équations fonctionnelles et conjecture de Weil, Inst. Hautes Études Sci. Publ. Math. (1987) 131
,[16] On the Hecke algebras and the colored HOMFLY polynomial, Trans. Amer. Math. Soc. 362 (2010) 1 | DOI
, ,[17] The 1,2–coloured HOMFLY-PT link homology, Trans. Amer. Math. Soc. 363 (2011) 2091 | DOI
, , ,[18] A user’s guide to spectral sequences, 58, Cambridge Univ. Press (2001)
,[19] Homfly polynomial via an invariant of colored plane graphs, Enseign. Math. 44 (1998) 325
, , ,[20] Compact corigid objects in triangulated categories and co–t–structures, Cent. Eur. J. Math. 6 (2008) 25 | DOI
,[21] Mixed Hodge structures, 52, Springer (2008) | DOI
, ,[22] Mixed Hodge modules, Proc. Japan Acad. Ser. A Math. Sci. 62 (1986) 360 | DOI
,[23] A structure theorem for Harish-Chandra bimodules via coinvariants and Golod rings, J. Algebra 282 (2004) 349 | DOI
,[24] Khovanov–Rozansky homology via a canopolis formalism, Algebr. Geom. Topol. 7 (2007) 673 | DOI
,[25] The bounded below equivariant derived category, in preparation
, ,[26] A geometric model for Hochschild homology of Soergel bimodules, Geom. Topol. 12 (2008) 1243 | DOI
, ,[27] The geometry of Markov traces, preprint (2009)
, ,[28] Singular Soergel bimodules, Int. Math. Res. Not. 2011 (2011) 4555 | DOI
,Cité par Sources :