Universal polynomials for tautological integrals on Hilbert schemes
Geometry & topology, Tome 21 (2017) no. 1, pp. 253-314.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We show that tautological integrals on Hilbert schemes of points can be written in terms of universal polynomials in Chern numbers. The results hold in all dimensions, though they strengthen known results even for surfaces by allowing integrals over arbitrary “geometric” subsets (and their Chern–Schwartz–MacPherson classes).

We apply this to enumerative questions, proving a generalised Göttsche conjecture for all isolated singularity types and in all dimensions. So if L is a sufficiently ample line bundle on a smooth variety X, in a general subsystem d |L| of appropriate dimension the number of hypersurfaces with given isolated singularity types is a polynomial in the Chern numbers of (X,L).

When X is a surface, we get similar results for the locus of curves with fixed “BPS spectrum” in the sense of stable pairs theory.

DOI : 10.2140/gt.2017.21.253
Classification : 14C05, 14N10, 14N35
Keywords: Hilbert schemes, tautological bundles, Göttsche conjecture, counting singular divisors

Rennemo, Jørgen 1

1 All Souls College, Oxford, OX1 4AL, United Kingdom
@article{GT_2017_21_1_a5,
     author = {Rennemo, J{\o}rgen},
     title = {Universal polynomials for tautological integrals on {Hilbert} schemes},
     journal = {Geometry & topology},
     pages = {253--314},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2017},
     doi = {10.2140/gt.2017.21.253},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.253/}
}
TY  - JOUR
AU  - Rennemo, Jørgen
TI  - Universal polynomials for tautological integrals on Hilbert schemes
JO  - Geometry & topology
PY  - 2017
SP  - 253
EP  - 314
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.253/
DO  - 10.2140/gt.2017.21.253
ID  - GT_2017_21_1_a5
ER  - 
%0 Journal Article
%A Rennemo, Jørgen
%T Universal polynomials for tautological integrals on Hilbert schemes
%J Geometry & topology
%D 2017
%P 253-314
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.253/
%R 10.2140/gt.2017.21.253
%F GT_2017_21_1_a5
Rennemo, Jørgen. Universal polynomials for tautological integrals on Hilbert schemes. Geometry & topology, Tome 21 (2017) no. 1, pp. 253-314. doi : 10.2140/gt.2017.21.253. http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.253/

[1] P Aluffi, Euler characteristics of general linear sections and polynomial Chern classes, Rend. Circ. Mat. Palermo 62 (2013) 3 | DOI

[2] S Boissière, M A Nieper-Wisskirchen, Generating series in the cohomology of Hilbert schemes of points on surfaces, LMS J. Comput. Math. 10 (2007) 254 | DOI

[3] S Cappell, L Maxim, T Ohmoto, J Schürmann, S Yokura, Characteristic classes of Hilbert schemes of points via symmetric products, Geom. Topol. 17 (2013) 1165 | DOI

[4] J Cheah, Cellular decompositions for nested Hilbert schemes of points, Pacific J. Math. 183 (1998) 39 | DOI

[5] A Douady, Le problème des modules pour les sous-espaces analytiques compacts d’un espace analytique donné, Ann. Inst. Fourier (Grenoble) 16 (1966) 1

[6] G Ellingsrud, L Göttsche, M Lehn, On the cobordism class of the Hilbert scheme of a surface, J. Algebraic Geom. 10 (2001) 81

[7] J Fogarty, Algebraic families on an algebraic surface, Amer. J. Math 90 (1968) 511 | DOI

[8] W Fulton, Intersection theory, 2, Springer (1998) | DOI

[9] G González-Sprinberg, L’obstruction locale d’Euler et le théorème de MacPherson, from: "Caractéristique d’Euler-Poincaré" (editor J L Verdier), Astérisque 83, Soc. Math. France (1981) 7

[10] L Göttsche, A conjectural generating function for numbers of curves on surfaces, Comm. Math. Phys. 196 (1998) 523 | DOI

[11] G M Greuel, C Lossen, E Shustin, Introduction to singularities and deformations, Springer (2007) | DOI

[12] I Grojnowski, Instantons and affine algebras, I : The Hilbert scheme and vertex operators, preprint (1995)

[13] A Grothendieck, Techniques de construction et théorèmes d’existence en géométrie algébrique, IV : Les schémas de Hilbert, from: "Séminaire Bourbaki 1960∕1961 (Exposé 221)", W A Benjamin (1966)

[14] A Hatcher, Algebraic topology, Cambridge University Press (2002)

[15] Y Hinohara, K Takahashi, H Terakawa, On tensor products of k–very ample line bundles, Proc. Amer. Math. Soc. 133 (2005) 687 | DOI

[16] M È Kazaryan, Multisingularities, cobordisms, and enumerative geometry, Uspekhi Mat. Nauk 58 (2003) 29

[17] S L Kleiman, The transversality of a general translate, Compositio Math. 28 (1974) 287

[18] S Kleiman, R Piene, Enumerating singular curves on surfaces, from: "Algebraic geometry : Hirzebruch 70" (editors P Pragacz, M Szurek, J Wiśniewski), Contemp. Math. 241, Amer. Math. Soc. (1999) 209 | DOI

[19] S Kleiman, R Piene, Enriques diagrams, arbitrarily near points, and Hilbert schemes, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei Mat. Appl. 22 (2011) 411 | DOI

[20] J Kollár, Rational curves on algebraic varieties, 32, Springer (1996) | DOI

[21] M Kool, V Shende, R P Thomas, A short proof of the Göttsche conjecture, Geom. Topol. 15 (2011) 397 | DOI

[22] M Lehn, Chern classes of tautological sheaves on Hilbert schemes of points on surfaces, Invent. Math. 136 (1999) 157 | DOI

[23] J Li, Zero dimensional Donaldson–Thomas invariants of threefolds, Geom. Topol. 10 (2006) 2117 | DOI

[24] J Li, Y J Tzeng, Universal polynomials for singular curves on surfaces, Compos. Math. 150 (2014) 1169 | DOI

[25] A K Liu, Family blowup formula, admissible graphs and the enumeration of singular curves, I, J. Differential Geom. 56 (2000) 381

[26] R D Macpherson, Chern classes for singular algebraic varieties, Ann. of Math. 100 (1974) 423 | DOI

[27] J I Magnússon, A global morphism from the Douady space to the cycle space, Math. Scand. 101 (2007) 19 | DOI

[28] D Maulik, Stable pairs and the HOMFLY polynomial, preprint (2012)

[29] H Nakajima, Heisenberg algebra and Hilbert schemes of points on projective surfaces, Ann. of Math. 145 (1997) 379 | DOI

[30] M A Nieper-Wisskirchen, Characteristic classes of the Hilbert schemes of points on non-compact simply-connected surfaces, JP J. Geom. Topol. 8 (2008) 7

[31] A Oblomkov, V Shende, The Hilbert scheme of a plane curve singularity and the HOMFLY polynomial of its link, Duke Math. J. 161 (2012) 1277 | DOI

[32] R Pandharipande, R P Thomas, Stable pairs and BPS invariants, J. Amer. Math. Soc. 23 (2010) 267 | DOI

[33] A Parusiński, P Pragacz, Chern–Schwartz–MacPherson classes and the Euler characteristic of degeneracy loci and special divisors, J. Amer. Math. Soc. 8 (1995) 793 | DOI

[34] R P Stanley, Enumerative combinatorics, 1, 49, Cambridge University Press (2012)

[35] Y J Tzeng, A proof of the Göttsche–Yau–Zaslow formula, J. Differential Geom. 90 (2012) 439

[36] T Yasuda, Flag higher Nash blowups, Comm. Algebra 37 (2009) 1001 | DOI

Cité par Sources :