A spectral sequence for stratified spaces and configuration spaces of points
Geometry & topology, Tome 21 (2017) no. 4, pp. 2527-2555.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We construct a spectral sequence associated to a stratified space, which computes the compactly supported cohomology groups of an open stratum in terms of the compactly supported cohomology groups of closed strata and the reduced cohomology groups of the poset of strata. Several familiar spectral sequences arise as special cases. The construction is sheaf-theoretic and works both for topological spaces and for the étale cohomology of algebraic varieties. As an application we prove a very general representation stability theorem for configuration spaces of points.

DOI : 10.2140/gt.2017.21.2527
Classification : 55R80, 55T05, 32S60, 14F25, 55N30
Keywords: configuration spaces, representation stability, homological stability, stratified spaces, spectral sequence

Petersen, Dan 1

1 Department of Mathematical Sciences, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark
@article{GT_2017_21_4_a15,
     author = {Petersen, Dan},
     title = {A spectral sequence for stratified spaces and configuration spaces of points},
     journal = {Geometry & topology},
     pages = {2527--2555},
     publisher = {mathdoc},
     volume = {21},
     number = {4},
     year = {2017},
     doi = {10.2140/gt.2017.21.2527},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.2527/}
}
TY  - JOUR
AU  - Petersen, Dan
TI  - A spectral sequence for stratified spaces and configuration spaces of points
JO  - Geometry & topology
PY  - 2017
SP  - 2527
EP  - 2555
VL  - 21
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.2527/
DO  - 10.2140/gt.2017.21.2527
ID  - GT_2017_21_4_a15
ER  - 
%0 Journal Article
%A Petersen, Dan
%T A spectral sequence for stratified spaces and configuration spaces of points
%J Geometry & topology
%D 2017
%P 2527-2555
%V 21
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.2527/
%R 10.2140/gt.2017.21.2527
%F GT_2017_21_4_a15
Petersen, Dan. A spectral sequence for stratified spaces and configuration spaces of points. Geometry & topology, Tome 21 (2017) no. 4, pp. 2527-2555. doi : 10.2140/gt.2017.21.2527. http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.2527/

[1] A A Beĭlinson, On the derived category of perverse sheaves, from: "K–theory, arithmetic and geometry" (editor Y I Manin), Lecture Notes in Math. 1289, Springer (1987) 27 | DOI

[2] A A Beĭlinson, J Bernstein, P Deligne, Faisceaux pervers, from: "Analysis and topology on singular spaces, I", Astérisque 100, Soc. Math. France (1982) 5

[3] M Bendersky, S Gitler, The cohomology of certain function spaces, Trans. Amer. Math. Soc. 326 (1991) 423 | DOI

[4] A Björner, T Ekedahl, Subspace arrangements over finite fields: cohomological and enumerative aspects, Adv. Math. 129 (1997) 159 | DOI

[5] T Church, Homological stability for configuration spaces of manifolds, Invent. Math. 188 (2012) 465 | DOI

[6] T Church, J S Ellenberg, B Farb, FI-modules and stability for representations of symmetric groups, Duke Math. J. 164 (2015) 1833 | DOI

[7] T Church, J S Ellenberg, B Farb, R Nagpal, FI-modules over Noetherian rings, Geom. Topol. 18 (2014) 2951 | DOI

[8] T Church, B Farb, Representation theory and homological stability, Adv. Math. 245 (2013) 250 | DOI

[9] F R Cohen, T J Lada, J P May, The homology of iterated loop spaces, 533, Springer (1976) | DOI

[10] F R Cohen, L R Taylor, Computations of Gel’fand–Fuks cohomology, the cohomology of function spaces, and the cohomology of configuration spaces, from: "Geometric applications of homotopy theory, I" (editors M Barratt, M Mahowald), Lecture Notes in Math. 657, Springer (1978) 106

[11] P Deligne, Théorie de Hodge, II, Inst. Hautes Études Sci. Publ. Math. 40 (1971) 5

[12] P Deligne, P Griffiths, J Morgan, D Sullivan, Real homotopy theory of Kähler manifolds, Invent. Math. 29 (1975) 245 | DOI

[13] B Farb, J Wolfson, Étale homological stability and arithmetic statistics, preprint (2015)

[14] S I Gelfand, Y I Manin, Methods of homological algebra, Springer (2003) | DOI

[15] E Getzler, Resolving mixed Hodge modules on configuration spaces, Duke Math. J. 96 (1999) 175 | DOI

[16] E Getzler, J D S Jones, Operads, homotopy algebra and iterated integrals for double loop spaces, unpublished manuscript (1994)

[17] M Goresky, R Macpherson, Stratified Morse theory, 14, Springer (1988) | DOI

[18] L Illusie, Complexe cotangent et déformations, I, 239, Springer (1971) | DOI

[19] A Joyal, Foncteurs analytiques et espèces de structures, from: "Combinatoire énumérative" (editors G Labelle, P Leroux), Lecture Notes in Math. 1234, Springer (1986) 126 | DOI

[20] A A Klyachko, Lie elements in a tensor algebra, Sibirsk. Mat. Ž. 15 (1974) 1296

[21] A Kupers, J Miller, T Tran, Homological stability for symmetric complements, Trans. Amer. Math. Soc. 368 (2016) 7745 | DOI

[22] E Looijenga, Cohomology of M3 and M31, from: "Mapping class groups and moduli spaces of Riemann surfaces" (editors C F Bödigheimer, R M Hain), Contemp. Math. 150, Amer. Math. Soc. (1993) 205 | DOI

[23] D Mcduff, Configuration spaces of positive and negative particles, Topology 14 (1975) 91 | DOI

[24] R Nagpal, FI-modules and the cohomology of modular representations of symmetric groups, preprint (2015)

[25] P Orlik, L Solomon, Combinatorics and topology of complements of hyperplanes, Invent. Math. 56 (1980) 167 | DOI

[26] M Saito, Mixed Hodge modules, Publ. Res. Inst. Math. Sci. 26 (1990) 221 | DOI

[27] R P Stanley, Some aspects of groups acting on finite posets, J. Combin. Theory Ser. A 32 (1982) 132 | DOI

[28] B Totaro, Configuration spaces of algebraic varieties, Topology 35 (1996) 1057 | DOI

[29] R Vakil, M M Wood, Discriminants in the Grothendieck ring, Duke Math. J. 164 (2015) 1139 | DOI

[30] V A Vassiliev, Complements of discriminants of smooth maps: topology and applications, 98, Amer. Math. Soc. (1992)

[31] V A Vassiliev, Topology of discriminants and their complements, from: "Proceedings of the International Congress of Mathematicians" (editor S D Chatterji), Birkhäuser (1995) 209

[32] M L Wachs, Poset topology: tools and applications, from: "Geometric combinatorics" (editors E Miller, V Reiner, B Sturmfels), IAS/Park City Math. Ser. 13, Amer. Math. Soc. (2007) 497

Cité par Sources :