Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Let be a Klein bottle. We show that the infimum of the Willmore energy among all immersed Klein bottles for is attained by a smooth embedded Klein bottle. We know from work of M W Hirsch and W S Massey that there are three distinct regular homotopy classes of immersions , each one containing an embedding. One is characterized by the property that it contains the minimizer just mentioned. For the other two regular homotopy classes we show . We give a classification of the minimizers of these two regular homotopy classes. In particular, we prove the existence of infinitely many distinct embedded Klein bottles in that have Euler normal number or and Willmore energy . The surfaces are distinct even when we allow conformal transformations of . As they are all minimizers in their regular homotopy class, they are Willmore surfaces.
Breuning, Patrick 1 ; Hirsch, Jonas 2 ; Mäder-Baumdicker, Elena 3
@article{GT_2017_21_4_a14, author = {Breuning, Patrick and Hirsch, Jonas and M\"ader-Baumdicker, Elena}, title = {Existence of minimizing {Willmore} {Klein} bottles in {Euclidean} four-space}, journal = {Geometry & topology}, pages = {2485--2526}, publisher = {mathdoc}, volume = {21}, number = {4}, year = {2017}, doi = {10.2140/gt.2017.21.2485}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.2485/} }
TY - JOUR AU - Breuning, Patrick AU - Hirsch, Jonas AU - Mäder-Baumdicker, Elena TI - Existence of minimizing Willmore Klein bottles in Euclidean four-space JO - Geometry & topology PY - 2017 SP - 2485 EP - 2526 VL - 21 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.2485/ DO - 10.2140/gt.2017.21.2485 ID - GT_2017_21_4_a14 ER -
%0 Journal Article %A Breuning, Patrick %A Hirsch, Jonas %A Mäder-Baumdicker, Elena %T Existence of minimizing Willmore Klein bottles in Euclidean four-space %J Geometry & topology %D 2017 %P 2485-2526 %V 21 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.2485/ %R 10.2140/gt.2017.21.2485 %F GT_2017_21_4_a14
Breuning, Patrick; Hirsch, Jonas; Mäder-Baumdicker, Elena. Existence of minimizing Willmore Klein bottles in Euclidean four-space. Geometry & topology, Tome 21 (2017) no. 4, pp. 2485-2526. doi : 10.2140/gt.2017.21.2485. http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.2485/
[1] Complex analysis: an introduction of the theory of analytic functions of one complex variable, McGraw-Hill (1966)
,[2] Self-duality in four-dimensional Riemannian geometry, Proc. Roy. Soc. London Ser. A 362 (1978) 425 | DOI
, , ,[3] Triple points and surgery of immersed surfaces, Proc. Amer. Math. Soc. 46 (1974) 407 | DOI
,[4] Existence of minimizing Willmore surfaces of prescribed genus, Int. Math. Res. Not. 2003 (2003) 553 | DOI
, ,[5] Minimal surfaces in Euclidean four-space, Amer. J. Math. 34 (1912) 215 | DOI
,[6] Branch points of conformal mappings of surfaces, Math. Ann. 279 (1988) 621 | DOI
, ,[7] On surfaces in four-spaces, Ann. Global Anal. Geom. 2 (1984) 257 | DOI
,[8] A note on Willmore minimizing Klein bottles in Euclidean space, preprint (2016)
, ,[9] Immersions of manifolds, Trans. Amer. Math. Soc. 93 (1959) 242 | DOI
,[10] Elliptische Funktionen und Modulformen, Springer (2007) | DOI
, ,[11] Conformal geometry and complete minimal surfaces, Bull. Amer. Math. Soc. 17 (1987) 291 | DOI
,[12] Estimates for the biharmonic energy on unbounded planar domains, and the existence of surfaces of every genus that minimize the squared-mean-curvature integral, from: "Elliptic and parabolic methods in geometry" (editors B Chow, R Gulliver, S Levy, J Sullivan), A K Peters (1996) 67
,[13] The spinor representations of surfaces in space, preprint (1996)
, ,[14] W2,2–conformal immersions of a closed Riemann surface into Rn, Comm. Anal. Geom. 20 (2012) 313 | DOI
, ,[15] Minimizers of the Willmore functional under fixed conformal class, J. Differential Geom. 93 (2013) 471
, ,[16] Spectral properties of bipolar minimal surfaces in S4, Differential Geom. Appl. 26 (2008) 9 | DOI
,[17] On the immersion of manifolds in euclidean space, Ann. of Math. 68 (1958) 562 | DOI
, ,[18] Complete minimal surfaces in S3, Ann. of Math. 92 (1970) 335 | DOI
,[19] A new conformal invariant and its applications to the Willmore conjecture and the first eigenvalue of compact surfaces, Invent. Math. 69 (1982) 269 | DOI
, ,[20] The Willmore conjecture, Jahresber. Dtsch. Math.-Ver. 116 (2014) 201 | DOI
, ,[21] Proof of a conjecture of Whitney, Pacific J. Math. 31 (1969) 143
,[22] Characteristic classes, 76, Princeton Univ. Press (1974)
, ,[23] Algebraic curves and Riemann surfaces, 5, Amer. Math. Soc. (1995) | DOI
,[24] Analysis aspects of Willmore surfaces, Invent. Math. 174 (2008) 1 | DOI
,[25] Variational principles for immersed surfaces with L2–bounded second fundamental form, J. Reine Angew. Math. 695 (2014) 41 | DOI
,[26] Topics in four-dimensional Riemannian geometry, from: "Geometry seminar ‘Luigi Bianchi’" (editor E Vesentini), Lecture Notes in Math. 1022, Springer (1983) 33 | DOI
,[27] Existence of surfaces minimizing the Willmore functional, Comm. Anal. Geom. 1 (1993) 281 | DOI
,[28] The self-intersections of a smooth n–manifold in 2n–space, Ann. of Math. 45 (1944) 220 | DOI
,[29] Sur l’inégalité de Chen–Willmore, C. R. Acad. Sci. Paris Sér. A–B 288 (1979)
,Cité par Sources :