Existence of minimizing Willmore Klein bottles in Euclidean four-space
Geometry & topology, Tome 21 (2017) no. 4, pp. 2485-2526.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Let K = P2 P2 be a Klein bottle. We show that the infimum of the Willmore energy among all immersed Klein bottles f : K n for n 4 is attained by a smooth embedded Klein bottle. We know from work of M W Hirsch and W S Massey that there are three distinct regular homotopy classes of immersions f : K 4, each one containing an embedding. One is characterized by the property that it contains the minimizer just mentioned. For the other two regular homotopy classes we show W(f) 8π. We give a classification of the minimizers of these two regular homotopy classes. In particular, we prove the existence of infinitely many distinct embedded Klein bottles in 4 that have Euler normal number 4 or + 4 and Willmore energy 8π. The surfaces are distinct even when we allow conformal transformations of 4. As they are all minimizers in their regular homotopy class, they are Willmore surfaces.

DOI : 10.2140/gt.2017.21.2485
Classification : 53C42, 53C28, 53A07
Keywords: Willmore surfaces, Klein bottle

Breuning, Patrick 1 ; Hirsch, Jonas 2 ; Mäder-Baumdicker, Elena 3

1 Pastor-Felke-Str. 1, D-76131 Karlsruhe, Germany
2 Scuola Internazionale Superiore di Studi Avanzati, Via Bonomea, 265, 34136 Trieste, Italy
3 Institute for Analysis, Karlsruhe Institute of Technology, Englerstr. 2, D-76131 Karlsruhe, Germany
@article{GT_2017_21_4_a14,
     author = {Breuning, Patrick and Hirsch, Jonas and M\"ader-Baumdicker, Elena},
     title = {Existence of minimizing {Willmore} {Klein} bottles in {Euclidean} four-space},
     journal = {Geometry & topology},
     pages = {2485--2526},
     publisher = {mathdoc},
     volume = {21},
     number = {4},
     year = {2017},
     doi = {10.2140/gt.2017.21.2485},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.2485/}
}
TY  - JOUR
AU  - Breuning, Patrick
AU  - Hirsch, Jonas
AU  - Mäder-Baumdicker, Elena
TI  - Existence of minimizing Willmore Klein bottles in Euclidean four-space
JO  - Geometry & topology
PY  - 2017
SP  - 2485
EP  - 2526
VL  - 21
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.2485/
DO  - 10.2140/gt.2017.21.2485
ID  - GT_2017_21_4_a14
ER  - 
%0 Journal Article
%A Breuning, Patrick
%A Hirsch, Jonas
%A Mäder-Baumdicker, Elena
%T Existence of minimizing Willmore Klein bottles in Euclidean four-space
%J Geometry & topology
%D 2017
%P 2485-2526
%V 21
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.2485/
%R 10.2140/gt.2017.21.2485
%F GT_2017_21_4_a14
Breuning, Patrick; Hirsch, Jonas; Mäder-Baumdicker, Elena. Existence of minimizing Willmore Klein bottles in Euclidean four-space. Geometry & topology, Tome 21 (2017) no. 4, pp. 2485-2526. doi : 10.2140/gt.2017.21.2485. http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.2485/

[1] L V Ahlfors, Complex analysis: an introduction of the theory of analytic functions of one complex variable, McGraw-Hill (1966)

[2] M F Atiyah, N J Hitchin, I M Singer, Self-duality in four-dimensional Riemannian geometry, Proc. Roy. Soc. London Ser. A 362 (1978) 425 | DOI

[3] T F Banchoff, Triple points and surgery of immersed surfaces, Proc. Amer. Math. Soc. 46 (1974) 407 | DOI

[4] M Bauer, E Kuwert, Existence of minimizing Willmore surfaces of prescribed genus, Int. Math. Res. Not. 2003 (2003) 553 | DOI

[5] L P Eisenhart, Minimal surfaces in Euclidean four-space, Amer. J. Math. 34 (1912) 215 | DOI

[6] J Eschenburg, R Tribuzy, Branch points of conformal mappings of surfaces, Math. Ann. 279 (1988) 621 | DOI

[7] T Friedrich, On surfaces in four-spaces, Ann. Global Anal. Geom. 2 (1984) 257 | DOI

[8] J Hirsch, E Mäder-Baumdicker, A note on Willmore minimizing Klein bottles in Euclidean space, preprint (2016)

[9] M W Hirsch, Immersions of manifolds, Trans. Amer. Math. Soc. 93 (1959) 242 | DOI

[10] M Koecher, A Krieg, Elliptische Funktionen und Modulformen, Springer (2007) | DOI

[11] R Kusner, Conformal geometry and complete minimal surfaces, Bull. Amer. Math. Soc. 17 (1987) 291 | DOI

[12] R Kusner, Estimates for the biharmonic energy on unbounded planar domains, and the existence of surfaces of every genus that minimize the squared-mean-curvature integral, from: "Elliptic and parabolic methods in geometry" (editors B Chow, R Gulliver, S Levy, J Sullivan), A K Peters (1996) 67

[13] R Kusner, N Schmitt, The spinor representations of surfaces in space, preprint (1996)

[14] E Kuwert, Y Li, W2,2–conformal immersions of a closed Riemann surface into Rn, Comm. Anal. Geom. 20 (2012) 313 | DOI

[15] E Kuwert, R Schätzle, Minimizers of the Willmore functional under fixed conformal class, J. Differential Geom. 93 (2013) 471

[16] H Lapointe, Spectral properties of bipolar minimal surfaces in S4, Differential Geom. Appl. 26 (2008) 9 | DOI

[17] R Lashof, S Smale, On the immersion of manifolds in euclidean space, Ann. of Math. 68 (1958) 562 | DOI

[18] H B Lawson Jr., Complete minimal surfaces in S3, Ann. of Math. 92 (1970) 335 | DOI

[19] P Li, S T Yau, A new conformal invariant and its applications to the Willmore conjecture and the first eigenvalue of compact surfaces, Invent. Math. 69 (1982) 269 | DOI

[20] F C Marques, A Neves, The Willmore conjecture, Jahresber. Dtsch. Math.-Ver. 116 (2014) 201 | DOI

[21] W S Massey, Proof of a conjecture of Whitney, Pacific J. Math. 31 (1969) 143

[22] J W Milnor, J D Stasheff, Characteristic classes, 76, Princeton Univ. Press (1974)

[23] R Miranda, Algebraic curves and Riemann surfaces, 5, Amer. Math. Soc. (1995) | DOI

[24] T Rivière, Analysis aspects of Willmore surfaces, Invent. Math. 174 (2008) 1 | DOI

[25] T Rivière, Variational principles for immersed surfaces with L2–bounded second fundamental form, J. Reine Angew. Math. 695 (2014) 41 | DOI

[26] S Salamon, Topics in four-dimensional Riemannian geometry, from: "Geometry seminar ‘Luigi Bianchi’" (editor E Vesentini), Lecture Notes in Math. 1022, Springer (1983) 33 | DOI

[27] L Simon, Existence of surfaces minimizing the Willmore functional, Comm. Anal. Geom. 1 (1993) 281 | DOI

[28] H Whitney, The self-intersections of a smooth n–manifold in 2n–space, Ann. of Math. 45 (1944) 220 | DOI

[29] P Wintgen, Sur l’inégalité de Chen–Willmore, C. R. Acad. Sci. Paris Sér. A–B 288 (1979)

Cité par Sources :