Infinite order corks
Geometry & topology, Tome 21 (2017) no. 4, pp. 2475-2484.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We construct a compact, contractible 4–manifold C, an infinite order self-diffeomorphism f of its boundary, and a smooth embedding of C into a closed, simply connected 4–manifold X, such that the manifolds obtained by cutting C out of X and regluing it by powers of f are all pairwise nondiffeomorphic. The manifold C can be chosen from among infinitely many homeomorphism types, all obtained by attaching a 2–handle to the meridian of a thickened knot complement.

DOI : 10.2140/gt.2017.21.2475
Classification : 57N13, 57R55
Keywords: cork, h-v-cobordism, 4–manifold

Gompf, Robert 1

1 Department of Mathematics, The University of Texas at Austin, RLM 8.100, 2515 Speedway Stop C1200, Austin, TX 78712-1202, United States
@article{GT_2017_21_4_a13,
     author = {Gompf, Robert},
     title = {Infinite order corks},
     journal = {Geometry & topology},
     pages = {2475--2484},
     publisher = {mathdoc},
     volume = {21},
     number = {4},
     year = {2017},
     doi = {10.2140/gt.2017.21.2475},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.2475/}
}
TY  - JOUR
AU  - Gompf, Robert
TI  - Infinite order corks
JO  - Geometry & topology
PY  - 2017
SP  - 2475
EP  - 2484
VL  - 21
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.2475/
DO  - 10.2140/gt.2017.21.2475
ID  - GT_2017_21_4_a13
ER  - 
%0 Journal Article
%A Gompf, Robert
%T Infinite order corks
%J Geometry & topology
%D 2017
%P 2475-2484
%V 21
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.2475/
%R 10.2140/gt.2017.21.2475
%F GT_2017_21_4_a13
Gompf, Robert. Infinite order corks. Geometry & topology, Tome 21 (2017) no. 4, pp. 2475-2484. doi : 10.2140/gt.2017.21.2475. http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.2475/

[1] S Akbulut, An exotic 4–manifold, J. Differential Geom. 33 (1991) 357 | DOI

[2] S Akbulut, An infinite order cork, preprint (2014)

[3] S Akbulut, D Ruberman, Absolutely exotic compact 4–manifolds, Comment. Math. Helv. 91 (2016) 1 | DOI

[4] S Akbulut, K Yasui, Cork twisting exotic Stein 4–manifolds, J. Differential Geom. 93 (2013) 1 | DOI

[5] D Auckly, H J Kim, P Melvin, D Ruberman, Equivariant corks, preprint (2016)

[6] C L Curtis, M H Freedman, W C Hsiang, R Stong, A decomposition theorem for h–cobordant smooth simply-connected compact 4–manifolds, Invent. Math. 123 (1996) 343 | DOI

[7] R Fintushel, R J Stern, Knots, links, and 4–manifolds, Invent. Math. 134 (1998) 363 | DOI

[8] R Fintushel, R J Stern, Double node neighborhoods and families of simply connected 4–manifolds with b+ = 1, J. Amer. Math. Soc. 19 (2006) 171 | DOI

[9] M H Freedman, The topology of four-dimensional manifolds, J. Differential Geom. 17 (1982) 357 | DOI

[10] M H Freedman, F Quinn, Topology of 4–manifolds, 39, Princeton Univ. Press (1990)

[11] K A Frøyshov, Compactness and gluing theory for monopoles, 15, Geom. Topol. Publ. (2008)

[12] H Gluck, The embedding of two-spheres in the four-sphere, Trans. Amer. Math. Soc. 104 (1962) 308 | DOI

[13] R E Gompf, Infinite order corks via handle diagrams, preprint (2016)

[14] R E Gompf, A I Stipsicz, 4–manifolds and Kirby calculus, 20, Amer. Math. Soc. (1999) | DOI

[15] R Matveyev, A decomposition of smooth simply-connected h–cobordant 4–manifolds, J. Differential Geom. 44 (1996) 571 | DOI

[16] B D Park, A gluing formula for the Seiberg–Witten invariant along T3, Michigan Math. J. 50 (2002) 593 | DOI

[17] A Ray, D Ruberman, 4–dimensional analogues of Dehn’s lemma, preprint (2016)

[18] N S Sunukjian, A note on knot surgery, J. Knot Theory Ramifications 24 (2015) | DOI

[19] M Tange, Finite order corks, preprint (2016)

[20] M Tange, Non-existence theorems on infinite order corks, preprint (2016)

[21] M Tange, Notes on Gompf’s infinite order cork, preprint (2016)

Cité par Sources :