Non-Kähler complex structures on ℝ4
Geometry & topology, Tome 21 (2017) no. 4, pp. 2461-2473.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We construct the first examples of non-Kähler complex structures on 4. These complex surfaces have some analogies with the complex structures constructed in the early fifties by Calabi and Eckmann on the products of two odd-dimensional spheres. However, our construction is quite different from that of Calabi and Eckmann.

DOI : 10.2140/gt.2017.21.2461
Classification : 32Q15, 57R40, 57R42
Keywords: achiral Lefschetz fibration, non-Kähler complex manifold, nonstandard complex Euclidean space

Di Scala, Antonio 1 ; Kasuya, Naohiko 2 ; Zuddas, Daniele 3

1 Dipartimento di Scienze Matematiche G L Lagrange, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
2 School of Social Informatics, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5258, Japan
3 School of Mathematics, Korea Institute for Advanced Study, 85 Hoegiro, Dongdaemun-gu, Seoul 02455, South Korea
@article{GT_2017_21_4_a12,
     author = {Di Scala, Antonio and Kasuya, Naohiko and Zuddas, Daniele},
     title = {Non-K\"ahler complex structures on {\ensuremath{\mathbb{R}}4}},
     journal = {Geometry & topology},
     pages = {2461--2473},
     publisher = {mathdoc},
     volume = {21},
     number = {4},
     year = {2017},
     doi = {10.2140/gt.2017.21.2461},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.2461/}
}
TY  - JOUR
AU  - Di Scala, Antonio
AU  - Kasuya, Naohiko
AU  - Zuddas, Daniele
TI  - Non-Kähler complex structures on ℝ4
JO  - Geometry & topology
PY  - 2017
SP  - 2461
EP  - 2473
VL  - 21
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.2461/
DO  - 10.2140/gt.2017.21.2461
ID  - GT_2017_21_4_a12
ER  - 
%0 Journal Article
%A Di Scala, Antonio
%A Kasuya, Naohiko
%A Zuddas, Daniele
%T Non-Kähler complex structures on ℝ4
%J Geometry & topology
%D 2017
%P 2461-2473
%V 21
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.2461/
%R 10.2140/gt.2017.21.2461
%F GT_2017_21_4_a12
Di Scala, Antonio; Kasuya, Naohiko; Zuddas, Daniele. Non-Kähler complex structures on ℝ4. Geometry & topology, Tome 21 (2017) no. 4, pp. 2461-2473. doi : 10.2140/gt.2017.21.2461. http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.2461/

[1] N Apostolakis, R Piergallini, D Zuddas, Lefschetz fibrations over the disc, Proc. Lond. Math. Soc. 107 (2013) 340 | DOI

[2] L Boc Thaler, F Forstnerič, A long C2 without holomorphic functions, Anal. PDE 9 (2016) 2031 | DOI

[3] E Calabi, B Eckmann, A class of compact, complex manifolds which are not algebraic, Ann. of Math. 58 (1953) 494 | DOI

[4] A J Di Scala, N Kasuya, D Zuddas, Non-Kähler complex structures on R4, II, preprint (2015)

[5] A J Di Scala, N Kasuya, D Zuddas, On embeddings of almost complex manifolds in almost complex Euclidean spaces, J. Geom. Phys. 101 (2016) 19 | DOI

[6] A J Di Scala, L Vezzoni, Complex submanifolds of almost complex Euclidean spaces, Q. J. Math. 61 (2010) 401 | DOI

[7] A J Di Scala, D Zuddas, Embedding almost-complex manifolds in almost-complex Euclidean spaces, J. Geom. Phys. 61 (2011) 1928 | DOI

[8] R E Gompf, A I Stipsicz, 4–manifolds and Kirby calculus, 20, Amer. Math. Soc. (1999) | DOI

[9] H Hopf, Zur Topologie der komplexen Mannigfaltigkeiten, from: "Studies and Essays Presented to R. Courant on his 60th Birthday", Interscience (1948) 167

[10] N Kasuya, On contact embeddings of contact manifolds in the odd dimensional Euclidean spaces, Internat. J. Math. 26 (2015) | DOI

[11] N Kasuya, An obstruction for codimension two contact embeddings in the odd dimensional Euclidean spaces, J. Math. Soc. Japan 68 (2016) 737 | DOI

[12] K Kodaira, On compact analytic surfaces, II, Ann. of Math. 78 (1963) 563 | DOI

[13] Y Matsumoto, On 4–manifolds fibered by tori, Proc. Japan Acad. Ser. A Math. Sci. 58 (1982) 298 | DOI

[14] C P Ramanujam, A topological characterisation of the affine plane as an algebraic variety, Ann. of Math. 94 (1971) 69 | DOI

[15] E F Wold, A long C2 which is not Stein, Ark. Mat. 48 (2010) 207 | DOI

Cité par Sources :