Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We extend the results of generic vanishing theory to polarizable real Hodge modules on compact complex tori, and from there to arbitrary compact Kähler manifolds. As applications, we obtain a bimeromorphic characterization of compact complex tori (among compact Kähler manifolds), semipositivity results and a description of the Leray filtration for maps to tori.
Pareschi, Giuseppe 1 ; Popa, Mihnea 2 ; Schnell, Christian 3
@article{GT_2017_21_4_a11, author = {Pareschi, Giuseppe and Popa, Mihnea and Schnell, Christian}, title = {Hodge modules on complex tori and generic vanishing for compact {K\"ahler} manifolds}, journal = {Geometry & topology}, pages = {2419--2460}, publisher = {mathdoc}, volume = {21}, number = {4}, year = {2017}, doi = {10.2140/gt.2017.21.2419}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.2419/} }
TY - JOUR AU - Pareschi, Giuseppe AU - Popa, Mihnea AU - Schnell, Christian TI - Hodge modules on complex tori and generic vanishing for compact Kähler manifolds JO - Geometry & topology PY - 2017 SP - 2419 EP - 2460 VL - 21 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.2419/ DO - 10.2140/gt.2017.21.2419 ID - GT_2017_21_4_a11 ER -
%0 Journal Article %A Pareschi, Giuseppe %A Popa, Mihnea %A Schnell, Christian %T Hodge modules on complex tori and generic vanishing for compact Kähler manifolds %J Geometry & topology %D 2017 %P 2419-2460 %V 21 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.2419/ %R 10.2140/gt.2017.21.2419 %F GT_2017_21_4_a11
Pareschi, Giuseppe; Popa, Mihnea; Schnell, Christian. Hodge modules on complex tori and generic vanishing for compact Kähler manifolds. Geometry & topology, Tome 21 (2017) no. 4, pp. 2419-2460. doi : 10.2140/gt.2017.21.2419. http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.2419/
[1] Higgs line bundles, Green–Lazarsfeld sets, and maps of Kähler manifolds to curves, Bull. Amer. Math. Soc. 26 (1992) 310 | DOI
,[2] Faisceaux pervers, from: "Analyse et topologie sur les espaces singuliers, I", Astérisque 100, Soc. Math. France (1982) 5
, , ,[3] Non-commutative tori and Fourier–Mukai duality, Compos. Math. 143 (2007) 423 | DOI
, , ,[4] Complex tori, 177, Birkhäuser (1999) | DOI
, ,[5] Degeneration of Hodge structures, Ann. of Math. 123 (1986) 457 | DOI
, , ,[6] Characterization of abelian varieties, Invent. Math. 143 (2001) 435 | DOI
, ,[7] On algebraic fiber spaces over varieties of maximal Albanese dimension, Duke Math. J. 111 (2002) 159 | DOI
, ,[8] Varieties with P3(X) = 4 and q(X) = dim(X), Ann. Sc. Norm. Super. Pisa Cl. Sci. 3 (2004) 399
, ,[9] Positivity in varieties of maximal Albanese dimension, J. Reine Angew. Math. (2015) | DOI
, ,[10] On coverings of simple abelian varieties, Bull. Soc. Math. France 134 (2006) 253 | DOI
,[11] Un théorème de finitude pour la monodromie, from: "Discrete groups in geometry and analysis" (editor R Howe), Progr. Math. 67, Birkhäuser (1987) 1 | DOI
,[12] Singularities of theta divisors and the birational geometry of irregular varieties, J. Amer. Math. Soc. 10 (1997) 243 | DOI
, ,[13] Deformation theory, generic vanishing theorems, and some conjectures of Enriques, Catanese and Beauville, Invent. Math. 90 (1987) 389 | DOI
, ,[14] Higher obstructions to deforming cohomology groups of line bundles, J. Amer. Math. Soc. 4 (1991) 87 | DOI
, ,[15] A derived category approach to generic vanishing, J. Reine Angew. Math. 575 (2004) 173 | DOI
,[16] An effective version of a theorem of Kawamata on the Albanese map, Commun. Contemp. Math. 13 (2011) 509 | DOI
,[17] Higher direct images of dualizing sheaves, II, Ann. of Math. 124 (1986) 171 | DOI
,[18] Canonical cohomology as an exterior module, Pure Appl. Math. Q. 7 (2011) 1529 | DOI
, , ,[19] Extension of twisted Hodge metrics for Kähler morphisms, J. Differential Geom. 83 (2009) 131 | DOI
, ,[20] Basic results on irregular varieties via Fourier–Mukai methods, from: "Current developments in algebraic geometry" (editors L Caporaso, J McKernan, M Mustaţă, M Popa), Math. Sci. Res. Inst. Publ. 59, Cambridge Univ. Press (2012) 379
,[21] Regularity on abelian varieties, I, J. Amer. Math. Soc. 16 (2003) 285 | DOI
, ,[22] Strong generic vanishing and a higher-dimensional Castelnuovo–de Franchis inequality, Duke Math. J. 150 (2009) 269 | DOI
, ,[23] GV –sheaves, Fourier–Mukai transform, and generic vanishing, Amer. J. Math. 133 (2011) 235 | DOI
, ,[24] Regularity on abelian varieties, III : Relationship with generic vanishing and applications, from: "Grassmannians, moduli spaces and vector bundles" (editors D A Ellwood, E Previato), Clay Math. Proc. 14, Amer. Math. Soc. (2011) 141
, ,[25] Generic vanishing filtrations and perverse objects in derived categories of coherent sheaves, from: "Derived categories in algebraic geometry" (editor Y Kawamata), Eur. Math. Soc. (2012) 251
,[26] Generic vanishing theory via mixed Hodge modules, Forum Math. Sigma 1 (2013) | DOI
, ,[27] The MHM project, book in progress (2016)
, ,[28] Modules de Hodge polarisables, Publ. Res. Inst. Math. Sci. 24 (1988) 849 | DOI
,[29] Decomposition theorem for proper Kähler morphisms, Tohoku Math. J. 42 (1990) 127 | DOI
,[30] Mixed Hodge modules, Publ. Res. Inst. Math. Sci. 26 (1990) 221 | DOI
,[31] On Kollár’s conjecture, from: "Several complex variables and complex geometry, II" (editors E Bedford, J P D’Angelo, R E Greene, S G Krantz), Proc. Sympos. Pure Math. 52, Amer. Math. Soc. (1991) 509
,[32] Variation of Hodge structure : the singularities of the period mapping, Invent. Math. 22 (1973) 211 | DOI
,[33] Hodge theory and unitary representations of reductive Lie groups, from: "Frontiers of mathematical sciences" (editors B Gu, S T Yau), Int. Press (2011) 397
, ,[34] Holonomic D-modules on abelian varieties, Publ. Math. Inst. Hautes Études Sci. 121 (2015) 1 | DOI
,[35] Torsion points on cohomology support loci : from D–modules to Simpson’s theorem, from: "Recent advances in algebraic geometry" (editors C D Hacon, M Mustaţă, M Popa), London Math. Soc. Lecture Note Ser. 417, Cambridge Univ. Press (2015) 405
,[36] On Saito’s vanishing theorem, Math. Res. Lett. 23 (2016) 499 | DOI
,[37] Subspaces of moduli spaces of rank one local systems, Ann. Sci. École Norm. Sup. 26 (1993) 361 | DOI
,[38] Higher direct images of canonical sheaves tensorized with semi-positive vector bundles by proper Kähler morphisms, Math. Ann. 303 (1995) 389 | DOI
,[39] Classification theory of algebraic varieties and compact complex spaces, 439, Springer (1975) | DOI
,[40] Sur l’image d’une variété kählérienne compacte, from: "Fonctions de plusieurs variables complexes, V" (editor F Norguet), Lecture Notes in Math. 1188, Springer (1986) 245 | DOI
,[41] Torsion points on the cohomology jump loci of compact Kähler manifolds, Math. Res. Lett. 23 (2016) 545 | DOI
,[42] Quaternions and matrices of quaternions, Linear Algebra Appl. 251 (1997) 21 | DOI
,[43] Hodge theory with degenerating coefficients : L2 cohomology in the Poincaré metric, Ann. of Math. 109 (1979) 415 | DOI
,Cité par Sources :