Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We show that every –quasiflat in an –dimensional cube complex is at finite Hausdorff distance from a finite union of –dimensional orthants. Then we introduce a class of cube complexes, called weakly special cube complexes, and show that quasi-isometries between their universal covers preserve top-dimensional flats. This is the foundational result towards the quasi-isometric classification of right-angled Artin groups with finite outer automorphism group.
Some of our arguments also extend to spaces of finite geometric dimension. In particular, we give a short proof of the fact that a top-dimensional quasiflat in a Euclidean building is Hausdorff close to a finite union of Weyl cones, which was previously established by Kleiner and Leeb (1997), Eskin and Farb (1997) and Wortman (2006) by different methods.
Huang, Jingyin 1
@article{GT_2017_21_4_a8, author = {Huang, Jingyin}, title = {Top-dimensional quasiflats in {CAT(0)} cube complexes}, journal = {Geometry & topology}, pages = {2281--2352}, publisher = {mathdoc}, volume = {21}, number = {4}, year = {2017}, doi = {10.2140/gt.2017.21.2281}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.2281/} }
Huang, Jingyin. Top-dimensional quasiflats in CAT(0) cube complexes. Geometry & topology, Tome 21 (2017) no. 4, pp. 2281-2352. doi : 10.2140/gt.2017.21.2281. http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.2281/
[1] Pushing fillings in right-angled Artin groups, J. Lond. Math. Soc. 87 (2013) 663 | DOI
, , , , ,[2] Divergence and quasimorphisms of right-angled Artin groups, Math. Ann. 352 (2012) 339 | DOI
, ,[3] Cubulated groups: thickness, relative hyperbolicity, and simplicial boundaries, Groups Geom. Dyn. 10 (2016) 649 | DOI
, ,[4] Hierarchically hyperbolic spaces, I: Curve complexes for cubical groups, preprint (2014)
, , ,[5] Quasi-isometric classification of some high dimensional right-angled Artin groups, Groups Geom. Dyn. 4 (2010) 681 | DOI
, , ,[6] Geometry and rigidity of mapping class groups, Geom. Topol. 16 (2012) 781 | DOI
, , , ,[7] Quasi-isometric classification of graph manifold groups, Duke Math. J. 141 (2008) 217 | DOI
, ,[8] The asymptotic geometry of right-angled Artin groups, I, Geom. Topol. 12 (2008) 1653 | DOI
, , ,[9] Quasiflats in CAT(0) 2–complexes, Algebr. Geom. Topol. 16 (2016) 2663 | DOI
, , ,[10] Geodesics and curvature in metric simplicial complexes, PhD thesis, Cornell Univ. (1991)
,[11] Metric spaces of non-positive curvature, 319, Springer (1999) | DOI
, ,[12] Rank rigidity for CAT(0) cube complexes, Geom. Funct. Anal. 21 (2011) 851 | DOI
, ,[13] An introduction to right-angled Artin groups, Geom. Dedicata 125 (2007) 141 | DOI
,[14] Divergence in right-angled Coxeter groups, Trans. Amer. Math. Soc. 367 (2015) 3549 | DOI
, ,[15] Notes on nonpositively curved polyhedra, from: "Low dimensional topology" (editors K Böröczky Jr., W Neumann, A Stipsicz), Bolyai Soc. Math. Stud. 8, János Bolyai Math. Soc. (1999) 11
, ,[16] The accessibility of finitely presented groups, Invent. Math. 81 (1985) 449 | DOI
,[17] Quasi-flats and rigidity in higher rank symmetric spaces, J. Amer. Math. Soc. 10 (1997) 653 | DOI
, ,[18] Rigidity of high dimensional graph manifolds, 372, Soc. Math. France (2015)
, , ,[19] Hyperbolic groups, from: "Essays in group theory" (editor S M Gersten), Math. Sci. Res. Inst. Publ. 8, Springer (1987) 75 | DOI
,[20] Special cube complexes, Geom. Funct. Anal. 17 (2008) 1551 | DOI
, ,[21] Quasi-isometric classification of right-angled Artin groups, I: The finite out case, preprint (2014)
,[22] Quasi-isometry of right-angled artin groups, II : Several infinite out case, preprint (2015)
,[23] Commensurability of groups quasi-isometric to RAAG’s, preprint (2016)
,[24] Groups quasi-isometric to RAAG’s, preprint (2016)
, ,[25] Dimension theory, 4, Princeton Univ. Press (1941)
, ,[26] Quasi-isometries and the de Rham decomposition, Topology 37 (1998) 1193 | DOI
, , ,[27] Quasi-isometries preserve the geometric decomposition of Haken manifolds, Invent. Math. 128 (1997) 393 | DOI
, ,[28] The local structure of length spaces with curvature bounded above, Math. Z. 231 (1999) 409 | DOI
,[29] Quasi-minimizing varieties in spaces of higher asymptotic rank, in preparation
, ,[30] Rigidity of quasi-isometries for symmetric spaces and Euclidean buildings, C. R. Acad. Sci. Paris Sér. I Math. 324 (1997) 639 | DOI
, ,[31] On the local structure and the homology of CAT(κ) spaces and Euclidean buildings, Adv. Geom. 11 (2011) 347 | DOI
,[32] Coarse rigidity of Euclidean buildings, preprint (2009)
, ,[33] Geodesically complete spaces with an upper curvature bound, in preparation
, ,[34] Strong rigidity of locally symmetric spaces, 78, Princeton Univ. Press (1973)
,[35] A volume convergence theorem for Alexandrov spaces with curvature bounded above, Math. Z. 241 (2002) 127 | DOI
,[36] Ends of group pairs and non-positively curved cube complexes, Proc. London Math. Soc. 71 (1995) 585 | DOI
,[37] Quasiflats with holes in reductive groups, Algebr. Geom. Topol. 6 (2006) 91 | DOI
,Cité par Sources :