Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
There is a classical result known as the collar lemma for hyperbolic surfaces. A consequence of the collar lemma is that if two closed curves and on a closed orientable hyperbolizable surface intersect each other, then there is an explicit lower bound for the length of in terms of the length of , which holds for every hyperbolic structure on the surface. In this article, we prove an analog of the classical collar lemma in the setting of Hitchin representations.
Lee, Gye-Seon 1 ; Zhang, Tengren 2
@article{GT_2017_21_4_a7, author = {Lee, Gye-Seon and Zhang, Tengren}, title = {Collar lemma for {Hitchin} representations}, journal = {Geometry & topology}, pages = {2243--2280}, publisher = {mathdoc}, volume = {21}, number = {4}, year = {2017}, doi = {10.2140/gt.2017.21.2243}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.2243/} }
Lee, Gye-Seon; Zhang, Tengren. Collar lemma for Hitchin representations. Geometry & topology, Tome 21 (2017) no. 4, pp. 2243-2280. doi : 10.2140/gt.2017.21.2243. http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.2243/
[1] Simultaneous uniformization, Bull. Amer. Math. Soc. 66 (1960) 94 | DOI
,[2] The pressure metric for Anosov representations, Geom. Funct. Anal. 25 (2015) 1089 | DOI
, , , ,[3] Metric spaces of non-positive curvature, 319, Springer (1999) | DOI
, ,[4] Maximal representations, non Archimedean Siegel spaces, and buildings, preprint (2015)
, ,[5] Geometry and spectra of compact Riemann surfaces, 106, Birkhäuser (1992) | DOI
,[6] The Margulis lemma and the thick and thin decomposition for convex real projective surfaces, Adv. Math. 122 (1996) 150 | DOI
,[7] Convex real projective structures on closed surfaces are closed, Proc. Amer. Math. Soc. 118 (1993) 657 | DOI
, ,[8] On convex projective manifolds and cusps, Adv. Math. 277 (2015) 181 | DOI
, , ,[9] Flat G–bundles with canonical metrics, J. Differential Geom. 28 (1988) 361
,[10] Quasiconformal homeomorphisms and the convex hull boundary, Ann. of Math. 159 (2004) 305 | DOI
, , ,[11] Convex real projective structures on compact surfaces, J. Differential Geom. 31 (1990) 791
,[12] Composantes de Hitchin et représentations hyperconvexes de groupes de surface, J. Differential Geom. 80 (2008) 391
,[13] Anosov representations: domains of discontinuity and applications, Invent. Math. 190 (2012) 357 | DOI
, ,[14] Collars on Riemann surfaces, from: "Discontinuous groups and Riemann surfaces" (editor L Greenberg), Ann. of Math. Studies 79, Princeton Univ. Press (1974) 263
,[15] Anosov flows, surface groups and curves in projective space, Invent. Math. 165 (2006) 51 | DOI
,[16] Cross ratios and identities for higher Teichmüller–Thurston theory, Duke Math. J. 149 (2009) 279 | DOI
, ,[17] A compactness theorem for Fuchsian groups of the second kind, Duke Math. J. 43 (1976) 829 | DOI
,[18] Entropy of Hilbert metrics and length spectrum of Hitchin representations in PSL(3, R), preprint (2015)
,[19] Degeneration of Hitchin representations along internal sequences, Geom. Funct. Anal. 25 (2015) 1588 | DOI
,Cité par Sources :