Collar lemma for Hitchin representations
Geometry & topology, Tome 21 (2017) no. 4, pp. 2243-2280.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

There is a classical result known as the collar lemma for hyperbolic surfaces. A consequence of the collar lemma is that if two closed curves A and B on a closed orientable hyperbolizable surface intersect each other, then there is an explicit lower bound for the length of A in terms of the length of B, which holds for every hyperbolic structure on the surface. In this article, we prove an analog of the classical collar lemma in the setting of Hitchin representations.

DOI : 10.2140/gt.2017.21.2243
Classification : 57M50, 30F60, 32G15
Keywords: hyperbolic surfaces, convex real projective surfaces, collar lemma, Hitchin representations

Lee, Gye-Seon 1 ; Zhang, Tengren 2

1 Mathematisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 205, D-69120 Heidelberg, Germany
2 Mathematics Department, California Institute of Technology, Mail Code 253-37, 1200 East California Boulevard, Pasadena, CA 91125, United States
@article{GT_2017_21_4_a7,
     author = {Lee, Gye-Seon and Zhang, Tengren},
     title = {Collar lemma for {Hitchin} representations},
     journal = {Geometry & topology},
     pages = {2243--2280},
     publisher = {mathdoc},
     volume = {21},
     number = {4},
     year = {2017},
     doi = {10.2140/gt.2017.21.2243},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.2243/}
}
TY  - JOUR
AU  - Lee, Gye-Seon
AU  - Zhang, Tengren
TI  - Collar lemma for Hitchin representations
JO  - Geometry & topology
PY  - 2017
SP  - 2243
EP  - 2280
VL  - 21
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.2243/
DO  - 10.2140/gt.2017.21.2243
ID  - GT_2017_21_4_a7
ER  - 
%0 Journal Article
%A Lee, Gye-Seon
%A Zhang, Tengren
%T Collar lemma for Hitchin representations
%J Geometry & topology
%D 2017
%P 2243-2280
%V 21
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.2243/
%R 10.2140/gt.2017.21.2243
%F GT_2017_21_4_a7
Lee, Gye-Seon; Zhang, Tengren. Collar lemma for Hitchin representations. Geometry & topology, Tome 21 (2017) no. 4, pp. 2243-2280. doi : 10.2140/gt.2017.21.2243. http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.2243/

[1] L Bers, Simultaneous uniformization, Bull. Amer. Math. Soc. 66 (1960) 94 | DOI

[2] M Bridgeman, R Canary, F Labourie, A Sambarino, The pressure metric for Anosov representations, Geom. Funct. Anal. 25 (2015) 1089 | DOI

[3] M R Bridson, A Haefliger, Metric spaces of non-positive curvature, 319, Springer (1999) | DOI

[4] M Burger, M B Pozzetti, Maximal representations, non Archimedean Siegel spaces, and buildings, preprint (2015)

[5] P Buser, Geometry and spectra of compact Riemann surfaces, 106, Birkhäuser (1992) | DOI

[6] S Choi, The Margulis lemma and the thick and thin decomposition for convex real projective surfaces, Adv. Math. 122 (1996) 150 | DOI

[7] S Choi, W M Goldman, Convex real projective structures on closed surfaces are closed, Proc. Amer. Math. Soc. 118 (1993) 657 | DOI

[8] D Cooper, D D Long, S Tillmann, On convex projective manifolds and cusps, Adv. Math. 277 (2015) 181 | DOI

[9] K Corlette, Flat G–bundles with canonical metrics, J. Differential Geom. 28 (1988) 361

[10] D B A Epstein, A Marden, V Markovic, Quasiconformal homeomorphisms and the convex hull boundary, Ann. of Math. 159 (2004) 305 | DOI

[11] W M Goldman, Convex real projective structures on compact surfaces, J. Differential Geom. 31 (1990) 791

[12] O Guichard, Composantes de Hitchin et représentations hyperconvexes de groupes de surface, J. Differential Geom. 80 (2008) 391

[13] O Guichard, A Wienhard, Anosov representations: domains of discontinuity and applications, Invent. Math. 190 (2012) 357 | DOI

[14] L Keen, Collars on Riemann surfaces, from: "Discontinuous groups and Riemann surfaces" (editor L Greenberg), Ann. of Math. Studies 79, Princeton Univ. Press (1974) 263

[15] F Labourie, Anosov flows, surface groups and curves in projective space, Invent. Math. 165 (2006) 51 | DOI

[16] F Labourie, G Mcshane, Cross ratios and identities for higher Teichmüller–Thurston theory, Duke Math. J. 149 (2009) 279 | DOI

[17] J P Matelski, A compactness theorem for Fuchsian groups of the second kind, Duke Math. J. 43 (1976) 829 | DOI

[18] N Tholozan, Entropy of Hilbert metrics and length spectrum of Hitchin representations in PSL(3, R), preprint (2015)

[19] T Zhang, Degeneration of Hitchin representations along internal sequences, Geom. Funct. Anal. 25 (2015) 1588 | DOI

Cité par Sources :