Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Charney and Lee have shown that the rational cohomology of the SatakeâBailyâBorel compactification of stabilizes as and they computed this stable cohomology as a Hopf algebra. We give a relatively simple algebrogeometric proof of their theorem and show that this stable cohomology comes with a mixed Hodge structure of which we determine the Hodge numbers. We find that the mixed Hodge structure on the primitive cohomology in degrees with is an extension of by ; in particular, it is not pure.
Chen, Jiaming 1 ; Looijenga, Eduard 2
@article{GT_2017_21_4_a6, author = {Chen, Jiaming and Looijenga, Eduard}, title = {The stable cohomology of the {Satake} compactification of {\ensuremath{\mathscr{A}}g}}, journal = {Geometry & topology}, pages = {2231--2241}, publisher = {mathdoc}, volume = {21}, number = {4}, year = {2017}, doi = {10.2140/gt.2017.21.2231}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.2231/} }
TY - JOUR AU - Chen, Jiaming AU - Looijenga, Eduard TI - The stable cohomology of the Satake compactification of đg JO - Geometry & topology PY - 2017 SP - 2231 EP - 2241 VL - 21 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.2231/ DO - 10.2140/gt.2017.21.2231 ID - GT_2017_21_4_a6 ER -
Chen, Jiaming; Looijenga, Eduard. The stable cohomology of the Satake compactification of đg. Geometry & topology, Tome 21 (2017) no. 4, pp. 2231-2241. doi : 10.2140/gt.2017.21.2231. http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.2231/
[1] Smooth compactifications of locally symmetric varieties, Cambridge Univ. Press (2010) | DOI
, , , ,[2] Stable real cohomology of arithmetic groups, Ann. Sci. Ăcole Norm. Sup. 7 (1974) 235 | DOI
,[3] Stable real cohomology of arithmetic groups, II, from: "Manifolds and Lie groups" (editors S Murakami, J Hano, K Okamoto, A Morimoto, H Ozeki), Progr. Math. 14, BirkhÀuser (1981) 21 | DOI
,[4] Corners and arithmetic groups, Comment. Math. Helv. 48 (1973) 436 | DOI
, ,[5] Cohomology of the Satake compactification, Topology 22 (1983) 389 | DOI
, ,[6] The homotopy type of the BailyâBorel and allied compactifications, preprint (2015)
, ,[7] ThĂ©orie de Hodge, III, Inst. Hautes Ătudes Sci. Publ. Math. 44 (1974) 5
,[8] Degeneration of abelian varieties, 22, Springer (1990) | DOI
, ,[9] Representation theory, 129, Springer (1991) | DOI
, ,[10] Chern classes of automorphic vector bundles, Invent. Math. 147 (2002) 561 | DOI
, ,[11] Discrete automorphism groups of convex cones of finite type, Compos. Math. 150 (2014) 1939 | DOI
,[12] GoreskyâPardon lifts of Chern classes and associated Tate extensions, Compos. Math. 153 (2017) 1349 | DOI
,[13] Modules de Hodge polarisables, Publ. Res. Inst. Math. Sci. 24 (1988) 849 | DOI
,Cité par Sources :