The stable cohomology of the Satake compactification of 𝒜g
Geometry & topology, Tome 21 (2017) no. 4, pp. 2231-2241.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Charney and Lee have shown that the rational cohomology of the Satake–Baily–Borel compactification Agbb of Ag stabilizes as g →∞ and they computed this stable cohomology as a Hopf algebra. We give a relatively simple algebrogeometric proof of their theorem and show that this stable cohomology comes with a mixed Hodge structure of which we determine the Hodge numbers. We find that the mixed Hodge structure on the primitive cohomology in degrees 4r + 2 with r ≄ 1 is an extension of ℚ(−2r − 1) by ℚ(0); in particular, it is not pure.

DOI : 10.2140/gt.2017.21.2231
Classification : 14G35, 32S35
Keywords: Satake compactification, stable cohomology, mixed Hodge structure

Chen, Jiaming 1 ; Looijenga, Eduard 2

1 Institut de mathématiques de Jussieu-Paris Rive Gauche, Université Paris 7 Diderot, Campus de Grands Moulins, Bureau 745, Bùtiment Sophie Germain, 75205 Paris Cedex 13, France
2 Yau Mathematical Sciences Center, Tsinghua University, Jin Chun Yuan West Building, Haidian District, Beijing, 100084, China
@article{GT_2017_21_4_a6,
     author = {Chen, Jiaming and Looijenga, Eduard},
     title = {The stable cohomology of the {Satake} compactification of {\ensuremath{\mathscr{A}}g}},
     journal = {Geometry & topology},
     pages = {2231--2241},
     publisher = {mathdoc},
     volume = {21},
     number = {4},
     year = {2017},
     doi = {10.2140/gt.2017.21.2231},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.2231/}
}
TY  - JOUR
AU  - Chen, Jiaming
AU  - Looijenga, Eduard
TI  - The stable cohomology of the Satake compactification of 𝒜g
JO  - Geometry & topology
PY  - 2017
SP  - 2231
EP  - 2241
VL  - 21
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.2231/
DO  - 10.2140/gt.2017.21.2231
ID  - GT_2017_21_4_a6
ER  - 
%0 Journal Article
%A Chen, Jiaming
%A Looijenga, Eduard
%T The stable cohomology of the Satake compactification of 𝒜g
%J Geometry & topology
%D 2017
%P 2231-2241
%V 21
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.2231/
%R 10.2140/gt.2017.21.2231
%F GT_2017_21_4_a6
Chen, Jiaming; Looijenga, Eduard. The stable cohomology of the Satake compactification of 𝒜g. Geometry & topology, Tome 21 (2017) no. 4, pp. 2231-2241. doi : 10.2140/gt.2017.21.2231. http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.2231/

[1] A Ash, D Mumford, M Rapoport, Y S Tai, Smooth compactifications of locally symmetric varieties, Cambridge Univ. Press (2010) | DOI

[2] A Borel, Stable real cohomology of arithmetic groups, Ann. Sci. École Norm. Sup. 7 (1974) 235 | DOI

[3] A Borel, Stable real cohomology of arithmetic groups, II, from: "Manifolds and Lie groups" (editors S Murakami, J Hano, K Okamoto, A Morimoto, H Ozeki), Progr. Math. 14, BirkhÀuser (1981) 21 | DOI

[4] A Borel, J P Serre, Corners and arithmetic groups, Comment. Math. Helv. 48 (1973) 436 | DOI

[5] R Charney, R Lee, Cohomology of the Satake compactification, Topology 22 (1983) 389 | DOI

[6] J Chen, E Looijenga, The homotopy type of the Baily–Borel and allied compactifications, preprint (2015)

[7] P Deligne, ThĂ©orie de Hodge, III, Inst. Hautes Études Sci. Publ. Math. 44 (1974) 5

[8] G Faltings, C L Chai, Degeneration of abelian varieties, 22, Springer (1990) | DOI

[9] W Fulton, J Harris, Representation theory, 129, Springer (1991) | DOI

[10] M Goresky, W Pardon, Chern classes of automorphic vector bundles, Invent. Math. 147 (2002) 561 | DOI

[11] E Looijenga, Discrete automorphism groups of convex cones of finite type, Compos. Math. 150 (2014) 1939 | DOI

[12] E Looijenga, Goresky–Pardon lifts of Chern classes and associated Tate extensions, Compos. Math. 153 (2017) 1349 | DOI

[13] M Saito, Modules de Hodge polarisables, Publ. Res. Inst. Math. Sci. 24 (1988) 849 | DOI

Cité par Sources :