Symplectic and contact differential graded algebras
Geometry & topology, Tome 21 (2017) no. 4, pp. 2161-2230.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We define Hamiltonian simplex differential graded algebras (DGA) with differentials that deform the high-energy symplectic homology differential and wrapped Floer homology differential in the cases of closed and open strings in a Liouville manifold of finite type, respectively. The order-m term in the differential is induced by varying natural degree-m coproducts over an (m1)–simplex, where the operations near the boundary of the simplex are trivial. We show that the Hamiltonian simplex DGA is quasi-isomorphic to the (nonequivariant) contact homology algebra and to the Legendrian homology algebra of the ideal boundary in the closed and open string cases, respectively.

DOI : 10.2140/gt.2017.21.2161
Classification : 53D40, 53D42, 16E45, 18G55
Keywords: symplectic homology, wrapped Floer homology, contact homology, symplectic field theory

Ekholm, Tobias 1 ; Oancea, Alexandru 2

1 Department of Mathematics, University of Uppsala, Box 480, SE-751 06 Uppsala, Sweden
2 Sorbonne Universités, UPMC Univ. Paris 06, UMR 7586, Institut de Mathématiques de Jussieu-Paris Rive Gauche, Case 247, 4 place Jussieu, 75005 Paris, France
@article{GT_2017_21_4_a5,
     author = {Ekholm, Tobias and Oancea, Alexandru},
     title = {Symplectic and contact differential graded algebras},
     journal = {Geometry & topology},
     pages = {2161--2230},
     publisher = {mathdoc},
     volume = {21},
     number = {4},
     year = {2017},
     doi = {10.2140/gt.2017.21.2161},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.2161/}
}
TY  - JOUR
AU  - Ekholm, Tobias
AU  - Oancea, Alexandru
TI  - Symplectic and contact differential graded algebras
JO  - Geometry & topology
PY  - 2017
SP  - 2161
EP  - 2230
VL  - 21
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.2161/
DO  - 10.2140/gt.2017.21.2161
ID  - GT_2017_21_4_a5
ER  - 
%0 Journal Article
%A Ekholm, Tobias
%A Oancea, Alexandru
%T Symplectic and contact differential graded algebras
%J Geometry & topology
%D 2017
%P 2161-2230
%V 21
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.2161/
%R 10.2140/gt.2017.21.2161
%F GT_2017_21_4_a5
Ekholm, Tobias; Oancea, Alexandru. Symplectic and contact differential graded algebras. Geometry & topology, Tome 21 (2017) no. 4, pp. 2161-2230. doi : 10.2140/gt.2017.21.2161. http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.2161/

[1] A Abbondandolo, A Portaluri, M Schwarz, The homology of path spaces and Floer homology with conormal boundary conditions, J. Fixed Point Theory Appl. 4 (2008) 263 | DOI

[2] A Abbondandolo, M Schwarz, On the Floer homology of cotangent bundles, Comm. Pure Appl. Math. 59 (2006) 254 | DOI

[3] M Abouzaid, Symplectic cohomology and Viterbo’s theorem, from: "Free loop spaces in geometry and topology" (editors J Latschev, A Oancea), IRMA Lect. Math. Theor. Phys. 24, Eur. Math. Soc. (2015) 271

[4] M Abouzaid, P Seidel, An open string analogue of Viterbo functoriality, Geom. Topol. 14 (2010) 627 | DOI

[5] M Aganagic, T Ekholm, L Ng, C Vafa, Topological strings, D–model, and knot contact homology, Adv. Theor. Math. Phys. 18 (2014) 827 | DOI

[6] F Bourgeois, Contact homology and homotopy groups of the space of contact structures, Math. Res. Lett. 13 (2006) 71 | DOI

[7] F Bourgeois, T Ekholm, Y Eliashberg, Effect of Legendrian surgery, Geom. Topol. 16 (2012) 301 | DOI

[8] F Bourgeois, Y Eliashberg, H Hofer, K Wysocki, E Zehnder, Compactness results in symplectic field theory, Geom. Topol. 7 (2003) 799 | DOI

[9] F Bourgeois, K Mohnke, Coherent orientations in symplectic field theory, Math. Z. 248 (2004) 123 | DOI

[10] F Bourgeois, A Oancea, An exact sequence for contact- and symplectic homology, Invent. Math. 175 (2009) 611 | DOI

[11] F Bourgeois, A Oancea, Symplectic homology, autonomous Hamiltonians, and Morse–Bott moduli spaces, Duke Math. J. 146 (2009) 71 | DOI

[12] F Bourgeois, A Oancea, S1–equivariant symplectic homology and linearized contact homology, Int. Math. Res. Not. (2016) | DOI

[13] K Cieliebak, T Ekholm, J Latschev, Compactness for holomorphic curves with switching Lagrangian boundary conditions, J. Symplectic Geom. 8 (2010) 267 | DOI

[14] K Cieliebak, T Ekholm, J Latschev, L Ng, Knot contact homology, string topology, and the cord algebra, preprint (2016)

[15] K Cieliebak, Y Eliashberg, From Stein to Weinstein and back : Symplectic geometry of affine complex manifolds, 59, Amer. Math. Soc. (2012) | DOI

[16] K Cieliebak, A Floer, H Hofer, K Wysocki, Applications of symplectic homology, II : Stability of the action spectrum, Math. Z. 223 (1996) 27 | DOI

[17] K Cieliebak, A Oancea, Symplectic homology and the Eilenberg–Steenrod axioms, preprint (2015)

[18] T Ekholm, Rational symplectic field theory over Z2 for exact Lagrangian cobordisms, J. Eur. Math. Soc. 10 (2008) 641 | DOI

[19] T Ekholm, Rational SFT, linearized Legendrian contact homology, and Lagrangian Floer cohomology, from: "Perspectives in analysis, geometry, and topology" (editors I Itenberg, B Jöricke, M Passare), Progr. Math. 296, Springer (2012) 109 | DOI

[20] T Ekholm, J B Etnyre, L Ng, M G Sullivan, Knot contact homology, Geom. Topol. 17 (2013) 975 | DOI

[21] T Ekholm, J Etnyre, M Sullivan, Orientations in Legendrian contact homology and exact Lagrangian immersions, Internat. J. Math. 16 (2005) 453 | DOI

[22] T Ekholm, J Etnyre, M Sullivan, Legendrian contact homology in P × R, Trans. Amer. Math. Soc. 359 (2007) 3301 | DOI

[23] T Ekholm, K Honda, T Kálmán, Legendrian knots and exact Lagrangian cobordisms, J. Eur. Math. Soc. 18 (2016) 2627 | DOI

[24] T Ekholm, I Smith, Exact Lagrangian immersions with one double point revisited, Math. Ann. 358 (2014) 195 | DOI

[25] Y Eliashberg, A Givental, H Hofer, Introduction to symplectic field theory, from: "Visions in mathematics: GAFA 2000" (editors N Alon, J Bourgain, A Connes, M Gromov, V Milman), Geom. Funct. Anal. Special Volume, II (2000) 560 | DOI

[26] K Fukaya, Y G Oh, H Ohta, K Ono, Lagrangian intersection Floer theory : anomaly and obstruction, 46, Amer. Math. Soc. (2009)

[27] M Goresky, N Hingston, Loop products and closed geodesics, Duke Math. J. 150 (2009) 117 | DOI

[28] A Hatcher, Algebraic topology, Cambridge Univ. Press (2002)

[29] H Hofer, K Wysocki, E Zehnder, Sc-smoothness, retractions and new models for smooth spaces, Discrete Contin. Dyn. Syst. 28 (2010) 665 | DOI

[30] H Hofer, K Wysocki, E Zehnder, Polyfold and Fredholm theory, I : Basic theory in M–polyfolds, preprint (2014)

[31] T Kimura, J Stasheff, A A Voronov, On operad structures of moduli spaces and string theory, Comm. Math. Phys. 171 (1995) 1 | DOI

[32] D Mcduff, D Salamon, J–holomorphic curves and symplectic topology, 52, Amer. Math. Soc. (2004) | DOI

[33] L Ng, Framed knot contact homology, Duke Math. J. 141 (2008) 365 | DOI

[34] J Pardon, Contact homology and virtual fundamental cycles, preprint (2015)

[35] J Pardon, An algebraic approach to virtual fundamental cycles on moduli spaces of pseudo-holomorphic curves, Geom. Topol. 20 (2016) 779 | DOI

[36] A F Ritter, Topological quantum field theory structure on symplectic cohomology, J. Topol. 6 (2013) 391 | DOI

[37] J Robbin, D Salamon, The Maslov index for paths, Topology 32 (1993) 827 | DOI

[38] D A Salamon, J Weber, Floer homology and the heat flow, Geom. Funct. Anal. 16 (2006) 1050 | DOI

[39] P Seidel, A biased view of symplectic cohomology, from: "Current developments in mathematics, 2006" (editors B Mazur, T Mrowka, W Schmid, R Stanley, S T Yau), International Press (2008) 211

[40] P Seidel, Fukaya categories and Picard–Lefschetz theory, Eur. Math. Soc. (2008) | DOI

[41] C Viterbo, Functors and computations in Floer homology with applications, II, preprint (1996)

[42] C Viterbo, Functors and computations in Floer homology with applications, I, Geom. Funct. Anal. 9 (1999) 985 | DOI

[43] A Zinger, The determinant line bundle for Fredholm operators : construction, properties, and classification, Math. Scand. 118 (2016) 203 | DOI

Cité par Sources :