Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We define Hamiltonian simplex differential graded algebras (DGA) with differentials that deform the high-energy symplectic homology differential and wrapped Floer homology differential in the cases of closed and open strings in a Liouville manifold of finite type, respectively. The order- term in the differential is induced by varying natural degree- coproducts over an –simplex, where the operations near the boundary of the simplex are trivial. We show that the Hamiltonian simplex DGA is quasi-isomorphic to the (nonequivariant) contact homology algebra and to the Legendrian homology algebra of the ideal boundary in the closed and open string cases, respectively.
Ekholm, Tobias 1 ; Oancea, Alexandru 2
@article{GT_2017_21_4_a5, author = {Ekholm, Tobias and Oancea, Alexandru}, title = {Symplectic and contact differential graded algebras}, journal = {Geometry & topology}, pages = {2161--2230}, publisher = {mathdoc}, volume = {21}, number = {4}, year = {2017}, doi = {10.2140/gt.2017.21.2161}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.2161/} }
TY - JOUR AU - Ekholm, Tobias AU - Oancea, Alexandru TI - Symplectic and contact differential graded algebras JO - Geometry & topology PY - 2017 SP - 2161 EP - 2230 VL - 21 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.2161/ DO - 10.2140/gt.2017.21.2161 ID - GT_2017_21_4_a5 ER -
Ekholm, Tobias; Oancea, Alexandru. Symplectic and contact differential graded algebras. Geometry & topology, Tome 21 (2017) no. 4, pp. 2161-2230. doi : 10.2140/gt.2017.21.2161. http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.2161/
[1] The homology of path spaces and Floer homology with conormal boundary conditions, J. Fixed Point Theory Appl. 4 (2008) 263 | DOI
, , ,[2] On the Floer homology of cotangent bundles, Comm. Pure Appl. Math. 59 (2006) 254 | DOI
, ,[3] Symplectic cohomology and Viterbo’s theorem, from: "Free loop spaces in geometry and topology" (editors J Latschev, A Oancea), IRMA Lect. Math. Theor. Phys. 24, Eur. Math. Soc. (2015) 271
,[4] An open string analogue of Viterbo functoriality, Geom. Topol. 14 (2010) 627 | DOI
, ,[5] Topological strings, D–model, and knot contact homology, Adv. Theor. Math. Phys. 18 (2014) 827 | DOI
, , , ,[6] Contact homology and homotopy groups of the space of contact structures, Math. Res. Lett. 13 (2006) 71 | DOI
,[7] Effect of Legendrian surgery, Geom. Topol. 16 (2012) 301 | DOI
, , ,[8] Compactness results in symplectic field theory, Geom. Topol. 7 (2003) 799 | DOI
, , , , ,[9] Coherent orientations in symplectic field theory, Math. Z. 248 (2004) 123 | DOI
, ,[10] An exact sequence for contact- and symplectic homology, Invent. Math. 175 (2009) 611 | DOI
, ,[11] Symplectic homology, autonomous Hamiltonians, and Morse–Bott moduli spaces, Duke Math. J. 146 (2009) 71 | DOI
, ,[12] S1–equivariant symplectic homology and linearized contact homology, Int. Math. Res. Not. (2016) | DOI
, ,[13] Compactness for holomorphic curves with switching Lagrangian boundary conditions, J. Symplectic Geom. 8 (2010) 267 | DOI
, , ,[14] Knot contact homology, string topology, and the cord algebra, preprint (2016)
, , , ,[15] From Stein to Weinstein and back : Symplectic geometry of affine complex manifolds, 59, Amer. Math. Soc. (2012) | DOI
, ,[16] Applications of symplectic homology, II : Stability of the action spectrum, Math. Z. 223 (1996) 27 | DOI
, , , ,[17] Symplectic homology and the Eilenberg–Steenrod axioms, preprint (2015)
, ,[18] Rational symplectic field theory over Z2 for exact Lagrangian cobordisms, J. Eur. Math. Soc. 10 (2008) 641 | DOI
,[19] Rational SFT, linearized Legendrian contact homology, and Lagrangian Floer cohomology, from: "Perspectives in analysis, geometry, and topology" (editors I Itenberg, B Jöricke, M Passare), Progr. Math. 296, Springer (2012) 109 | DOI
,[20] Knot contact homology, Geom. Topol. 17 (2013) 975 | DOI
, , , ,[21] Orientations in Legendrian contact homology and exact Lagrangian immersions, Internat. J. Math. 16 (2005) 453 | DOI
, , ,[22] Legendrian contact homology in P × R, Trans. Amer. Math. Soc. 359 (2007) 3301 | DOI
, , ,[23] Legendrian knots and exact Lagrangian cobordisms, J. Eur. Math. Soc. 18 (2016) 2627 | DOI
, , ,[24] Exact Lagrangian immersions with one double point revisited, Math. Ann. 358 (2014) 195 | DOI
, ,[25] Introduction to symplectic field theory, from: "Visions in mathematics: GAFA 2000" (editors N Alon, J Bourgain, A Connes, M Gromov, V Milman), Geom. Funct. Anal. Special Volume, II (2000) 560 | DOI
, , ,[26] Lagrangian intersection Floer theory : anomaly and obstruction, 46, Amer. Math. Soc. (2009)
, , , ,[27] Loop products and closed geodesics, Duke Math. J. 150 (2009) 117 | DOI
, ,[28] Algebraic topology, Cambridge Univ. Press (2002)
,[29] Sc-smoothness, retractions and new models for smooth spaces, Discrete Contin. Dyn. Syst. 28 (2010) 665 | DOI
, , ,[30] Polyfold and Fredholm theory, I : Basic theory in M–polyfolds, preprint (2014)
, , ,[31] On operad structures of moduli spaces and string theory, Comm. Math. Phys. 171 (1995) 1 | DOI
, , ,[32] J–holomorphic curves and symplectic topology, 52, Amer. Math. Soc. (2004) | DOI
, ,[33] Framed knot contact homology, Duke Math. J. 141 (2008) 365 | DOI
,[34] Contact homology and virtual fundamental cycles, preprint (2015)
,[35] An algebraic approach to virtual fundamental cycles on moduli spaces of pseudo-holomorphic curves, Geom. Topol. 20 (2016) 779 | DOI
,[36] Topological quantum field theory structure on symplectic cohomology, J. Topol. 6 (2013) 391 | DOI
,[37] The Maslov index for paths, Topology 32 (1993) 827 | DOI
, ,[38] Floer homology and the heat flow, Geom. Funct. Anal. 16 (2006) 1050 | DOI
, ,[39] A biased view of symplectic cohomology, from: "Current developments in mathematics, 2006" (editors B Mazur, T Mrowka, W Schmid, R Stanley, S T Yau), International Press (2008) 211
,[40] Fukaya categories and Picard–Lefschetz theory, Eur. Math. Soc. (2008) | DOI
,[41] Functors and computations in Floer homology with applications, II, preprint (1996)
,[42] Functors and computations in Floer homology with applications, I, Geom. Funct. Anal. 9 (1999) 985 | DOI
,[43] The determinant line bundle for Fredholm operators : construction, properties, and classification, Math. Scand. 118 (2016) 203 | DOI
,Cité par Sources :