Amalgam Anosov representations
Geometry & topology, Tome 21 (2017) no. 1, pp. 215-251.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Let Γ be a one-ended, torsion-free hyperbolic group and let G be a semisimple Lie group with finite center. Using the canonical JSJ splitting due to Sela, we define amalgam Anosov representations of Γ into G and prove that they form a domain of discontinuity for the action of Out(Γ). In the appendix, we prove, using projective Anosov Schottky groups, that if the restriction of the representation to every Fuchsian or rigid vertex group of the JSJ splitting of Γ is Anosov, with respect to a fixed pair of opposite parabolic subgroups, then ρ is amalgam Anosov.

DOI : 10.2140/gt.2017.21.215
Classification : 20H10, 22E40, 57M50
Keywords: character variety, Anosov representation, hyperbolic groups

Canary, Richard 1 ; Lee, Michelle 2 ; Stover, Matthew 3

1 Department of Mathematics, University of Michigan, 2074 East Hall, 530 Church St, Ann Arbor, MI 48109-1043, United States
2 Department of Mathematics, University of Maryland, William E Kirwan Hall, 4176 Campus Dr, College Park, MD 20742-4015, United States
3 Department of Mathematics, Temple University, Wachman Hall, 1805 N Broad St, Philadelphia, PA 19122, United States
@article{GT_2017_21_1_a4,
     author = {Canary, Richard and Lee, Michelle and Stover, Matthew},
     title = {Amalgam {Anosov} representations},
     journal = {Geometry & topology},
     pages = {215--251},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2017},
     doi = {10.2140/gt.2017.21.215},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.215/}
}
TY  - JOUR
AU  - Canary, Richard
AU  - Lee, Michelle
AU  - Stover, Matthew
TI  - Amalgam Anosov representations
JO  - Geometry & topology
PY  - 2017
SP  - 215
EP  - 251
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.215/
DO  - 10.2140/gt.2017.21.215
ID  - GT_2017_21_1_a4
ER  - 
%0 Journal Article
%A Canary, Richard
%A Lee, Michelle
%A Stover, Matthew
%T Amalgam Anosov representations
%J Geometry & topology
%D 2017
%P 215-251
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.215/
%R 10.2140/gt.2017.21.215
%F GT_2017_21_1_a4
Canary, Richard; Lee, Michelle; Stover, Matthew. Amalgam Anosov representations. Geometry & topology, Tome 21 (2017) no. 1, pp. 215-251. doi : 10.2140/gt.2017.21.215. http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.215/

[1] Y Benoist, Actions propres sur les espaces homogènes réductifs, Ann. of Math. 144 (1996) 315 | DOI

[2] Y Benoist, Propriétés asymptotiques des groupes linéaires, Geom. Funct. Anal. 7 (1997) 1 | DOI

[3] M Bestvina, M Feighn, A combination theorem for negatively curved groups, J. Differential Geom. 35 (1992) 85

[4] B H Bowditch, Cut points and canonical splittings of hyperbolic groups, Acta Math. 180 (1998) 145 | DOI

[5] M Bridgeman, R Canary, F Labourie, A Sambarino, The pressure metric for Anosov representations, Geom. Funct. Anal. 25 (2015) 1089 | DOI

[6] M R Bridson, A Haefliger, Metric spaces of non-positive curvature, 319, Springer (1999) | DOI

[7] R D Canary, Dynamics on character varieties: a survey, from: "Handbook of group actions, II" (editors L Ji, A Papadopoulos, S T Yau), Adv. Lect. Math. 32, International Press (2015) 175

[8] R D Canary, S Hersonsky, Ubiquity of geometric finiteness in boundaries of deformation spaces of hyperbolic 3–manifolds, Amer. J. Math. 126 (2004) 1193 | DOI

[9] R D Canary, P A Storm, Moduli spaces of hyperbolic 3–manifolds and dynamics on character varieties, Comment. Math. Helv. 88 (2013) 221 | DOI

[10] M Carette, The automorphism group of accessible groups, J. Lond. Math. Soc. 84 (2011) 731 | DOI

[11] C Champetier, Petite simplification dans les groupes hyperboliques, Ann. Fac. Sci. Toulouse Math. 3 (1994) 161 | DOI

[12] R Gitik, Ping-pong on negatively curved groups, J. Algebra 217 (1999) 65 | DOI

[13] W M Goldman, Mapping class group dynamics on surface group representations, from: "Problems on mapping class groups and related topics" (editor B Farb), Proc. Sympos. Pure Math. 74, Amer. Math. Soc. (2006) 189 | DOI

[14] M Gromov, Hyperbolic groups, from: "Essays in group theory" (editor S M Gersten), Math. Sci. Res. Inst. Publ. 8, Springer (1987) 75 | DOI

[15] F Guéritaud, O Guichard, F Kassel, A Wienhard, Anosov representations and proper actions, Geom. Topol. 21 (2017) 485 | DOI

[16] O Guichard, A Wienhard, Anosov representations: domains of discontinuity and applications, Invent. Math. 190 (2012) 357 | DOI

[17] T Jørgensen, On discrete groups of Möbius transformations, Amer. J. Math. 98 (1976) 739 | DOI

[18] M Kapovich, Hyperbolic manifolds and discrete groups, 183, Birkhäuser (2001)

[19] M Kapovich, B Leeb, J Porti, Morse actions of discrete groups on symmetric space, preprint (2014)

[20] F Klein, Neue Beiträge zur Riemann’schen Functionentheorie, Math. Ann. 21 (1883) 141 | DOI

[21] F Labourie, Anosov flows, surface groups and curves in projective space, Invent. Math. 165 (2006) 51 | DOI

[22] F Labourie, Cross ratios, Anosov representations and the energy functional on Teichmüller space, Ann. Sci. Éc. Norm. Supér. 41 (2008) 439

[23] M Lee, Dynamics on the PSL(2, C)–character variety of a compression body, Algebr. Geom. Topol. 14 (2014) 2149 | DOI

[24] M Lee, Dynamics on the PSL(2, C)–character variety of a twisted I–bundle, Groups Geom. Dyn. 9 (2015) 187 | DOI

[25] G Levitt, Automorphisms of hyperbolic groups and graphs of groups, Geom. Dedicata 114 (2005) 49 | DOI

[26] J Marché, M Wolff, The modular action on PSL2(R)–characters in genus 2, Duke Math. J. 165 (2016) 371 | DOI

[27] I Mineyev, Flows and joins of metric spaces, Geom. Topol. 9 (2005) 403 | DOI

[28] Y N Minsky, On dynamics of Out(Fn) on PSL2(C) characters, Israel J. Math. 193 (2013) 47 | DOI

[29] J W Morgan, On Thurston’s uniformization theorem for three-dimensional manifolds, from: "The Smith conjecture" (editors J W Morgan, H Bass), Pure Appl. Math. 112, Academic Press (1984) 37 | DOI

[30] J F Quint, L’indicateur de croissance des groupes de Schottky, Ergodic Theory Dynam. Systems 23 (2003) 249 | DOI

[31] Z Sela, Structure and rigidity in (Gromov) hyperbolic groups and discrete groups in rank 1 Lie groups, II, Geom. Funct. Anal. 7 (1997) 561 | DOI

[32] J P Serre, Trees, Springer (1980)

[33] J Souto, Ergodicity of the action of the mapping class group on a component of the character variety, in preparation

[34] D Sullivan, Quasiconformal homeomorphisms and dynamics, II : Structural stability implies hyperbolicity for Kleinian groups, Acta Math. 155 (1985) 243 | DOI

[35] J Tits, Free subgroups in linear groups, J. Algebra 20 (1972) 250 | DOI

Cité par Sources :