Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We study a version of the James model for the loop space of a suspension in unstable âhomotopy theory. We use this model to establish an analog of G W Whiteheadâs classical refinement of the Freudenthal suspension theorem in âhomotopy theory: our result refines F Morelâs âsimplicial suspension theorem. We then describe some âdifferentials in the EHP sequence in âhomotopy theory. These results are analogous to classical results of G W Whitehead. Using these tools, we deduce some new results about unstable âhomotopy sheaves of motivic spheres, including the counterpart of a classical rational nonvanishing result.
Asok, Aravind 1 ; Wickelgren, Kirsten 2 ; Williams, Ben 3
@article{GT_2017_21_4_a4, author = {Asok, Aravind and Wickelgren, Kirsten and Williams, Ben}, title = {The simplicial suspension sequence in {\ensuremath{\mathbb{A}}1} {\textendash}homotopy}, journal = {Geometry & topology}, pages = {2093--2160}, publisher = {mathdoc}, volume = {21}, number = {4}, year = {2017}, doi = {10.2140/gt.2017.21.2093}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.2093/} }
TY - JOUR AU - Asok, Aravind AU - Wickelgren, Kirsten AU - Williams, Ben TI - The simplicial suspension sequence in đž1 âhomotopy JO - Geometry & topology PY - 2017 SP - 2093 EP - 2160 VL - 21 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.2093/ DO - 10.2140/gt.2017.21.2093 ID - GT_2017_21_4_a4 ER -
%0 Journal Article %A Asok, Aravind %A Wickelgren, Kirsten %A Williams, Ben %T The simplicial suspension sequence in đž1 âhomotopy %J Geometry & topology %D 2017 %P 2093-2160 %V 21 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.2093/ %R 10.2140/gt.2017.21.2093 %F GT_2017_21_4_a4
Asok, Aravind; Wickelgren, Kirsten; Williams, Ben. The simplicial suspension sequence in đž1 âhomotopy. Geometry & topology, Tome 21 (2017) no. 4, pp. 2093-2160. doi : 10.2140/gt.2017.21.2093. http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.2093/
[1] The generalized Whitehead product, Pacific J. Math. 12 (1962) 7 | DOI
,[2] Toward a meta-stable range in A1âhomotopy theory of punctured affine spaces, Oberwolfach Rep. 10 (2013) 1892 | DOI
, ,[3] Algebraic vector bundles on spheres, J. Topol. 7 (2014) 894 | DOI
, ,[4] A cohomological classification of vector bundles on smooth affine threefolds, Duke Math. J. 163 (2014) 2561 | DOI
, ,[5] Splitting vector bundles outside the stable range and A1âhomotopy sheaves of punctured affine spaces, J. Amer. Math. Soc. 28 (2015) 1031 | DOI
, ,[6] Comparing Euler Classes, The Quarterly Journal of Mathematics 67 (2016) 603 | DOI
, ,[7] An explicit KOâdegree map and applications, Journal of Topology 10 (2017) 268 | DOI
, ,[8] Un contre-exemple Ă la conjecture de A1âconnexitĂ© de F Morel, C. R. Math. Acad. Sci. Paris 342 (2006) 943 | DOI
,[9] The stable suspension of an EilenbergâMacLane space, Trans. Amer. Math. Soc. 96 (1960) 101 | DOI
,[10] On left and right model categories and left and right Bousfield localizations, Homology Homotopy Appl. 12 (2010) 245 | DOI
,[11] The Milnor ring of a global field, from: "Algebraic Kâtheory, II : âClassicalâ algebraic Kâtheory and connections with arithmetic" (editor H Bass), Springer (1973) | DOI
, ,[12] On Hopf invariants, Comment. Math. Helv. 42 (1967) 180 | DOI
, ,[13] Products and carrier theory, Proc. London Math. Soc. 7 (1957) 219 | DOI
,[14] Simplicial homotopy theory, Advances in Math. 6 (1971) 107 | DOI
,[15] Voevodskyâs lectures on motivic cohomology 2000/2001, from: "Algebraic topology" (editors N A Baas, E M Friedlander, B Jahren, P A ĂstvĂŠr), Abel Symp. 4, Springer (2009) 355 | DOI
,[16] Topological hypercovers and A1ârealizations, Math. Z. 246 (2004) 667 | DOI
, ,[17] Motivic Hopf elements and relations, New York J. Math. 19 (2013) 823
, ,[18] The algebraic and geometric theory of quadratic forms, 56, Amer. Math. Soc. (2008) | DOI
, , ,[19] Cellular spaces, null spaces and homotopy localization, 1622, Springer (1996) | DOI
,[20] On the homotopy suspension, Comment. Math. Helv. 43 (1968) 225 | DOI
,[21] The Kâtheory of fields in characteristic p, Invent. Math. 139 (2000) 459 | DOI
, ,[22] MilnorâWitt Kâgroups of local rings, Advances in Mathematics 286 (2016) 729 | DOI
, , ,[23] Simplicial homotopy theory, 174, BirkhÀuser (1999) | DOI
, ,[24] On the homotopy groups of unions of spaces, Comment. Math. Helv. 29 (1955) 59 | DOI
,[25] Model categories and their localizations, 99, Amer. Math. Soc. (2003)
,[26] Gabberâs presentation lemma for finite fields, preprint (2016)
, ,[27] Model categories, 63, Amer. Math. Soc. (1999)
,[28] Etale realization on the A1âhomotopy theory of schemes, Adv. Math. 184 (2004) 37 | DOI
,[29] Reduced product spaces, Ann. of Math. 62 (1955) 170 | DOI
,[30] On the suspension triad, Ann. of Math. 63 (1956) 191 | DOI
,[31] On the suspension sequence, Ann. of Math. 65 (1957) 74 | DOI
,[32] Simplicial presheaves, J. Pure Appl. Algebra 47 (1987) 35 | DOI
,[33] Motivic symmetric spectra, Doc. Math. 5 (2000) 445
,[34] Local homotopy theory, Springer (2015) | DOI
,[35] Symmetric bilinear forms, quadratic forms and Milnor Kâtheory in characteristic two, Invent. Math. 66 (1982) 493 | DOI
,[36] The transfer and JamesâHopf invariants, Math. Z. 196 (1987) 391 | DOI
,[37] Classifying spaces and fibrations, 155, Amer. Math. Soc. (1975)
,[38] Lecture notes on motivic cohomology, 2, Amer. Math. Soc. (2006)
, , ,[39] On the construction FK, from: "Algebraic topologyâa studentâs guide" (editor J F Adams), London Mathematical Society Lecture Note Series 4, Cambridge University Press (1972) 119 | DOI
,[40] An introduction to A1âhomotopy theory, from: "Contemporary developments in algebraic Kâtheory" (editors M Karoubi, A O Kuku, C Pedrini), ICTP Lect. Notes XV, Abdus Salam Int. Cent. Theoret. Phys. (2004) 357
,[41] Sur les puissances de lâidĂ©al fondamental de lâanneau de Witt, Comment. Math. Helv. 79 (2004) 689 | DOI
,[42] Milnorâs conjecture on quadratic forms and mod 2 motivic complexes, Rend. Sem. Mat. Univ. Padova 114 (2005) 63
,[43] The stable A1âconnectivity theorems, K-Theory 35 (2005) 1 | DOI
,[44] A1âalgebraic topology over a field, 2052, Springer (2012) | DOI
,[45] A1âhomotopy theory of schemes, Inst. Hautes Ătudes Sci. Publ. Math. 90 (1999) 45 | DOI
, ,[46] An exact sequence for KâMâ2 with applications to quadratic forms, Ann. of Math. 165 (2007) 1 | DOI
, , ,[47] Stable motivic Ï1 of low-dimensional fields, Adv. Math. 265 (2014) 97 | DOI
, ,[48] Homotopical algebra, 43, Springer (1967) | DOI
,[49] The first stable homotopy groups of motivic spheres, preprint (2016)
, , ,[50] Cohomologie modulo 2 des complexes dâEilenbergâMacLane, Comment. Math. Helv. 27 (1953) 198 | DOI
,[51] On motivic spherical bundles, PhD thesis, Institut fĂŒr Mathematik, UniversitĂ€t OsnabrĂŒck (2012)
,[52] Composition methods in homotopy groups of spheres, 49, Princeton University Press (1962)
,[53] Reduced power operations in motivic cohomology, Publ. Math. Inst. Hautes Ătudes Sci. 98 (2003) 1 | DOI
,[54] Motivic cohomology with Zâ2âcoefficients, Publ. Math. Inst. Hautes Ătudes Sci. 98 (2003) 59 | DOI
,[55] On motivic cohomology with Zâlâcoefficients, Ann. of Math. 174 (2011) 401 | DOI
,[56] Classifying spaces and fibrations of simplicial sheaves, J. Homotopy Relat. Struct. 6 (2011) 1
,[57] A generalization of the Hopf invariant, Ann. of Math. 51 (1950) 192 | DOI
,[58] On the Freudenthal theorems, Ann. of Math. 57 (1953) 209 | DOI
,[59] Elements of homotopy theory, 61, Springer (1978) | DOI
,[60] On adding relations to homotopy groups, Ann. of Math. 42 (1941) 409 | DOI
,[61] The simplicial EHP Sequence in A1âalgebraic topology, preprint (2014)
, ,[62] Simplicial objects and homotopy groups, from: "Braids" (editors A J Berrick, F R Cohen, E Hanbury, Y L Wong, J Wu), Lect. Notes Ser. Inst. Math. Sci. Natl. Univ. Singap. 19, World Sci. Publ. (2010) 31 | DOI
,Cité par Sources :