The simplicial suspension sequence in 𝔾1 –homotopy
Geometry & topology, Tome 21 (2017) no. 4, pp. 2093-2160.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We study a version of the James model for the loop space of a suspension in unstable A1 –homotopy theory. We use this model to establish an analog of G W Whitehead’s classical refinement of the Freudenthal suspension theorem in A1 –homotopy theory: our result refines F Morel’s A1 –simplicial suspension theorem. We then describe some E1 –differentials in the EHP sequence in A1 –homotopy theory. These results are analogous to classical results of G W Whitehead. Using these tools, we deduce some new results about unstable A1 –homotopy sheaves of motivic spheres, including the counterpart of a classical rational nonvanishing result.

DOI : 10.2140/gt.2017.21.2093
Classification : 14F42, 19E15, 55Q15, 55Q20, 55Q25
Keywords: $A^1$-homotopy, James construction

Asok, Aravind 1 ; Wickelgren, Kirsten 2 ; Williams, Ben 3

1 Department of Mathematics, University of Southern California, 3620 S Vermont Ave, Los Angeles, CA 90089-2532, United States
2 School of Mathematics, Georgia Institute of Technology, 686 Cherry Street, Atlanta, GA 30308, United States
3 Department of Mathematics, University of British Columbia, 1984 Mathematics Road, Vancouver BC V6T 1Z2, Canada
@article{GT_2017_21_4_a4,
     author = {Asok, Aravind and Wickelgren, Kirsten and Williams, Ben},
     title = {The simplicial suspension sequence in {\ensuremath{\mathbb{A}}1} {\textendash}homotopy},
     journal = {Geometry & topology},
     pages = {2093--2160},
     publisher = {mathdoc},
     volume = {21},
     number = {4},
     year = {2017},
     doi = {10.2140/gt.2017.21.2093},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.2093/}
}
TY  - JOUR
AU  - Asok, Aravind
AU  - Wickelgren, Kirsten
AU  - Williams, Ben
TI  - The simplicial suspension sequence in 𝔾1 –homotopy
JO  - Geometry & topology
PY  - 2017
SP  - 2093
EP  - 2160
VL  - 21
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.2093/
DO  - 10.2140/gt.2017.21.2093
ID  - GT_2017_21_4_a4
ER  - 
%0 Journal Article
%A Asok, Aravind
%A Wickelgren, Kirsten
%A Williams, Ben
%T The simplicial suspension sequence in 𝔾1 –homotopy
%J Geometry & topology
%D 2017
%P 2093-2160
%V 21
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.2093/
%R 10.2140/gt.2017.21.2093
%F GT_2017_21_4_a4
Asok, Aravind; Wickelgren, Kirsten; Williams, Ben. The simplicial suspension sequence in 𝔾1 –homotopy. Geometry & topology, Tome 21 (2017) no. 4, pp. 2093-2160. doi : 10.2140/gt.2017.21.2093. http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.2093/

[1] M Arkowitz, The generalized Whitehead product, Pacific J. Math. 12 (1962) 7 | DOI

[2] A Asok, J Fasel, Toward a meta-stable range in A1–homotopy theory of punctured affine spaces, Oberwolfach Rep. 10 (2013) 1892 | DOI

[3] A Asok, J Fasel, Algebraic vector bundles on spheres, J. Topol. 7 (2014) 894 | DOI

[4] A Asok, J Fasel, A cohomological classification of vector bundles on smooth affine threefolds, Duke Math. J. 163 (2014) 2561 | DOI

[5] A Asok, J Fasel, Splitting vector bundles outside the stable range and A1–homotopy sheaves of punctured affine spaces, J. Amer. Math. Soc. 28 (2015) 1031 | DOI

[6] A Asok, J Fasel, Comparing Euler Classes, The Quarterly Journal of Mathematics 67 (2016) 603 | DOI

[7] A Asok, J Fasel, An explicit KO–degree map and applications, Journal of Topology 10 (2017) 268 | DOI

[8] J Ayoub, Un contre-exemple Ă  la conjecture de A1–connexitĂ© de F Morel, C. R. Math. Acad. Sci. Paris 342 (2006) 943 | DOI

[9] W D Barcus, The stable suspension of an Eilenberg–MacLane space, Trans. Amer. Math. Soc. 96 (1960) 101 | DOI

[10] C Barwick, On left and right model categories and left and right Bousfield localizations, Homology Homotopy Appl. 12 (2010) 245 | DOI

[11] H Bass, J Tate, The Milnor ring of a global field, from: "Algebraic K–theory, II : ‘Classical’ algebraic K–theory and connections with arithmetic" (editor H Bass), Springer (1973) | DOI

[12] J M Boardman, B Steer, On Hopf invariants, Comment. Math. Helv. 42 (1967) 180 | DOI

[13] D E Cohen, Products and carrier theory, Proc. London Math. Soc. 7 (1957) 219 | DOI

[14] E B Curtis, Simplicial homotopy theory, Advances in Math. 6 (1971) 107 | DOI

[15] P Deligne, Voevodsky’s lectures on motivic cohomology 2000/2001, from: "Algebraic topology" (editors N A Baas, E M Friedlander, B Jahren, P A Østvér), Abel Symp. 4, Springer (2009) 355 | DOI

[16] D Dugger, D C Isaksen, Topological hypercovers and A1–realizations, Math. Z. 246 (2004) 667 | DOI

[17] D Dugger, D C Isaksen, Motivic Hopf elements and relations, New York J. Math. 19 (2013) 823

[18] R Elman, N Karpenko, A Merkurjev, The algebraic and geometric theory of quadratic forms, 56, Amer. Math. Soc. (2008) | DOI

[19] E D Farjoun, Cellular spaces, null spaces and homotopy localization, 1622, Springer (1996) | DOI

[20] T Ganea, On the homotopy suspension, Comment. Math. Helv. 43 (1968) 225 | DOI

[21] T Geisser, M Levine, The K–theory of fields in characteristic p, Invent. Math. 139 (2000) 459 | DOI

[22] S Gille, S Scully, C Zhong, Milnor–Witt K–groups of local rings, Advances in Mathematics 286 (2016) 729 | DOI

[23] P G Goerss, J F Jardine, Simplicial homotopy theory, 174, BirkhÀuser (1999) | DOI

[24] P J Hilton, On the homotopy groups of unions of spaces, Comment. Math. Helv. 29 (1955) 59 | DOI

[25] P S Hirschhorn, Model categories and their localizations, 99, Amer. Math. Soc. (2003)

[26] A Hogadi, G Kulkarni, Gabber’s presentation lemma for finite fields, preprint (2016)

[27] M Hovey, Model categories, 63, Amer. Math. Soc. (1999)

[28] D C Isaksen, Etale realization on the A1–homotopy theory of schemes, Adv. Math. 184 (2004) 37 | DOI

[29] I M James, Reduced product spaces, Ann. of Math. 62 (1955) 170 | DOI

[30] I M James, On the suspension triad, Ann. of Math. 63 (1956) 191 | DOI

[31] I M James, On the suspension sequence, Ann. of Math. 65 (1957) 74 | DOI

[32] J F Jardine, Simplicial presheaves, J. Pure Appl. Algebra 47 (1987) 35 | DOI

[33] J F Jardine, Motivic symmetric spectra, Doc. Math. 5 (2000) 445

[34] J F Jardine, Local homotopy theory, Springer (2015) | DOI

[35] K Kato, Symmetric bilinear forms, quadratic forms and Milnor K–theory in characteristic two, Invent. Math. 66 (1982) 493 | DOI

[36] N J Kuhn, The transfer and James–Hopf invariants, Math. Z. 196 (1987) 391 | DOI

[37] J P May, Classifying spaces and fibrations, 155, Amer. Math. Soc. (1975)

[38] C Mazza, V Voevodsky, C Weibel, Lecture notes on motivic cohomology, 2, Amer. Math. Soc. (2006)

[39] J Milnor, On the construction FK, from: "Algebraic topology—a student’s guide" (editor J F Adams), London Mathematical Society Lecture Note Series 4, Cambridge University Press (1972) 119 | DOI

[40] F Morel, An introduction to A1–homotopy theory, from: "Contemporary developments in algebraic K–theory" (editors M Karoubi, A O Kuku, C Pedrini), ICTP Lect. Notes XV, Abdus Salam Int. Cent. Theoret. Phys. (2004) 357

[41] F Morel, Sur les puissances de l’idĂ©al fondamental de l’anneau de Witt, Comment. Math. Helv. 79 (2004) 689 | DOI

[42] F Morel, Milnor’s conjecture on quadratic forms and mod 2 motivic complexes, Rend. Sem. Mat. Univ. Padova 114 (2005) 63

[43] F Morel, The stable A1–connectivity theorems, K-Theory 35 (2005) 1 | DOI

[44] F Morel, A1–algebraic topology over a field, 2052, Springer (2012) | DOI

[45] F Morel, V Voevodsky, A1–homotopy theory of schemes, Inst. Hautes Études Sci. Publ. Math. 90 (1999) 45 | DOI

[46] D Orlov, A Vishik, V Voevodsky, An exact sequence for K∗M∕2 with applications to quadratic forms, Ann. of Math. 165 (2007) 1 | DOI

[47] K M Ormsby, P A ØstvĂŠr, Stable motivic π1 of low-dimensional fields, Adv. Math. 265 (2014) 97 | DOI

[48] D G Quillen, Homotopical algebra, 43, Springer (1967) | DOI

[49] O Röndigs, M Spitzweck, P A ØstvÊr, The first stable homotopy groups of motivic spheres, preprint (2016)

[50] J P Serre, Cohomologie modulo 2 des complexes d’Eilenberg–MacLane, Comment. Math. Helv. 27 (1953) 198 | DOI

[51] F Strunk, On motivic spherical bundles, PhD thesis, Institut fĂŒr Mathematik, UniversitĂ€t OsnabrĂŒck (2012)

[52] H Toda, Composition methods in homotopy groups of spheres, 49, Princeton University Press (1962)

[53] V Voevodsky, Reduced power operations in motivic cohomology, Publ. Math. Inst. Hautes Études Sci. 98 (2003) 1 | DOI

[54] V Voevodsky, Motivic cohomology with Z∕2–coefficients, Publ. Math. Inst. Hautes Études Sci. 98 (2003) 59 | DOI

[55] V Voevodsky, On motivic cohomology with Z∕l–coefficients, Ann. of Math. 174 (2011) 401 | DOI

[56] M Wendt, Classifying spaces and fibrations of simplicial sheaves, J. Homotopy Relat. Struct. 6 (2011) 1

[57] G W Whitehead, A generalization of the Hopf invariant, Ann. of Math. 51 (1950) 192 | DOI

[58] G W Whitehead, On the Freudenthal theorems, Ann. of Math. 57 (1953) 209 | DOI

[59] G W Whitehead, Elements of homotopy theory, 61, Springer (1978) | DOI

[60] J H C Whitehead, On adding relations to homotopy groups, Ann. of Math. 42 (1941) 409 | DOI

[61] K Wickelgren, B Williams, The simplicial EHP Sequence in A1–algebraic topology, preprint (2014)

[62] J Wu, Simplicial objects and homotopy groups, from: "Braids" (editors A J Berrick, F R Cohen, E Hanbury, Y L Wong, J Wu), Lect. Notes Ser. Inst. Math. Sci. Natl. Univ. Singap. 19, World Sci. Publ. (2010) 31 | DOI

Cité par Sources :