Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We study the equivariantly perturbed mirror Landau–Ginzburg model of . We show that the Eynard–Orantin recursion on this model encodes all-genus, all-descendants equivariant Gromov–Witten invariants of . The nonequivariant limit of this result is the Norbury–Scott conjecture, while by taking large radius limit we recover the Bouchard–Mariño conjecture on simple Hurwitz numbers.
Fang, Bohan 1 ; Liu, Chiu-Chu 2 ; Zong, Zhengyu 3
@article{GT_2017_21_4_a3, author = {Fang, Bohan and Liu, Chiu-Chu and Zong, Zhengyu}, title = {The {Eynard{\textendash}Orantin} recursion and equivariant mirror symmetry for the projective line}, journal = {Geometry & topology}, pages = {2049--2092}, publisher = {mathdoc}, volume = {21}, number = {4}, year = {2017}, doi = {10.2140/gt.2017.21.2049}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.2049/} }
TY - JOUR AU - Fang, Bohan AU - Liu, Chiu-Chu AU - Zong, Zhengyu TI - The Eynard–Orantin recursion and equivariant mirror symmetry for the projective line JO - Geometry & topology PY - 2017 SP - 2049 EP - 2092 VL - 21 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.2049/ DO - 10.2140/gt.2017.21.2049 ID - GT_2017_21_4_a3 ER -
%0 Journal Article %A Fang, Bohan %A Liu, Chiu-Chu %A Zong, Zhengyu %T The Eynard–Orantin recursion and equivariant mirror symmetry for the projective line %J Geometry & topology %D 2017 %P 2049-2092 %V 21 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.2049/ %R 10.2140/gt.2017.21.2049 %F GT_2017_21_4_a3
Fang, Bohan; Liu, Chiu-Chu; Zong, Zhengyu. The Eynard–Orantin recursion and equivariant mirror symmetry for the projective line. Geometry & topology, Tome 21 (2017) no. 4, pp. 2049-2092. doi : 10.2140/gt.2017.21.2049. http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.2049/
[1] A matrix model for simple Hurwitz numbers, and topological recursion, J. Geom. Phys. 61 (2011) 522 | DOI
, , , ,[2] Hurwitz numbers, matrix models and enumerative geometry, from: "From Hodge theory to integrability and TQFT tt∗–geometry" (editors R Y Donagi, K Wendland), Proc. Sympos. Pure Math. 78, Amer. Math. Soc. (2008) 263 | DOI
, ,[3] Geometry of 2D topological field theories, from: "Integrable systems and quantum groups" (editors M Francaviglia, S Greco), Lecture Notes in Math. 1620, Springer (1996) 120 | DOI
,[4] Polynomiality of Hurwitz numbers, Bouchard–Mariño conjecture, and a new proof of the ELSV formula, Adv. Math. 279 (2015) 67 | DOI
, , , , ,[5] Identification of the Givental formula with the spectral curve topological recursion procedure, Comm. Math. Phys. 328 (2014) 669 | DOI
, , , ,[6] Hurwitz numbers and intersections on moduli spaces of curves, Invent. Math. 146 (2001) 297 | DOI
, , , ,[7] Intersection numbers of spectral curves, preprint (2011)
,[8] Invariants of spectral curves and intersection theory of moduli spaces of complex curves, Commun. Number Theory Phys. 8 (2014) 541 | DOI
,[9] The Laplace transform of the cut-and-join equation and the Bouchard–Mariño conjecture on Hurwitz numbers, Publ. Res. Inst. Math. Sci. 47 (2011) 629 | DOI
, , ,[10] Invariants of algebraic curves and topological expansion, Commun. Number Theory Phys. 1 (2007) 347 | DOI
, ,[11] Computation of open Gromov–Witten invariants for toric Calabi–Yau 3–folds by topological recursion, a proof of the BKMP conjecture, Comm. Math. Phys. 337 (2015) 483 | DOI
, ,[12] Homological mirror symmetry is T–duality for Pn, Commun. Number Theory Phys. 2 (2008) 719 | DOI
,[13] Central charges of T–dual branes for toric varieties, preprint (2016)
,[14] T–duality and homological mirror symmetry for toric varieties, Adv. Math. 229 (2012) 1875 | DOI
, , , ,[15] All genus open-closed mirror symmetry for affine toric Calabi–Yau 3–orbifolds, preprint (2013)
, , ,[16] Theta functions on Riemann surfaces, 352, Springer (1973) | DOI
,[17] Equivariant Gromov–Witten invariants, Internat. Math. Res. Notices 1996 (1996) 613 | DOI
,[18] Elliptic Gromov–Witten invariants and the generalized mirror conjecture, from: "Integrable systems and algebraic geometry" (editors M H Saito, Y Shimizu, K Ueno), World Sci. (1998) 107
,[19] Gromov–Witten invariants and quantization of quadratic Hamiltonians, Mosc. Math. J. 1 (2001) 551
,[20] Semisimple Frobenius structures at higher genus, Internat. Math. Res. Notices 2001 (2001) 1265 | DOI
,[21] Hodge integrals and Hurwitz numbers via virtual localization, Compositio Math. 135 (2003) 25 | DOI
, ,[22] An integral structure in quantum cohomology and mirror symmetry for toric orbifolds, Adv. Math. 222 (2009) 1016 | DOI
,[23] CFT and topological recursion, J. High Energy Phys. (2010) | DOI
, ,[24] Frobenius manifolds, Gromov–Witten theory, and Virasoro constraints, preprint (2004)
, ,[25] Mirror principle, I, Asian J. Math. 1 (1997) 729 | DOI
, , ,[26] Gromov–Witten invariants of P1 and Eynard–Orantin invariants, Geom. Topol. 18 (2014) 1865 | DOI
, ,[27] Gromov–Witten theory, Hurwitz theory, and completed cycles, Ann. of Math. 163 (2006) 517 | DOI
, ,[28] The equivariant Gromov–Witten theory of P1, Ann. of Math. 163 (2006) 561 | DOI
, ,[29] On a conjecture of Givental, J. Math. Phys. 45 (2004) 4539 | DOI
, ,Cité par Sources :