The Eynard–Orantin recursion and equivariant mirror symmetry for the projective line
Geometry & topology, Tome 21 (2017) no. 4, pp. 2049-2092.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We study the equivariantly perturbed mirror Landau–Ginzburg model of 1. We show that the Eynard–Orantin recursion on this model encodes all-genus, all-descendants equivariant Gromov–Witten invariants of 1. The nonequivariant limit of this result is the Norbury–Scott conjecture, while by taking large radius limit we recover the Bouchard–Mariño conjecture on simple Hurwitz numbers.

DOI : 10.2140/gt.2017.21.2049
Classification : 14N35
Keywords: Gromov–Witten invariants, mirror symmetry, Eynard–Orantin recursion, Norbury–Scott conjecture

Fang, Bohan 1 ; Liu, Chiu-Chu 2 ; Zong, Zhengyu 3

1 Beijing International Center for Mathematical Research, Peking University, 5 Yiheyuan Road, Jingchunyuan 78, Beijing, 100871, China
2 Department of Mathematics, Columbia University, Room 623, Mail Code 4435, 2990 Broadway, New York, NY 10027, United States
3 Yau Mathematical Sciences Center, Tsinghua University, Jing Chun Yuan West Building, Tsinghua University, Haidian District, Beijing, 100084, China
@article{GT_2017_21_4_a3,
     author = {Fang, Bohan and Liu, Chiu-Chu and Zong, Zhengyu},
     title = {The {Eynard{\textendash}Orantin} recursion and equivariant mirror symmetry for the projective line},
     journal = {Geometry & topology},
     pages = {2049--2092},
     publisher = {mathdoc},
     volume = {21},
     number = {4},
     year = {2017},
     doi = {10.2140/gt.2017.21.2049},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.2049/}
}
TY  - JOUR
AU  - Fang, Bohan
AU  - Liu, Chiu-Chu
AU  - Zong, Zhengyu
TI  - The Eynard–Orantin recursion and equivariant mirror symmetry for the projective line
JO  - Geometry & topology
PY  - 2017
SP  - 2049
EP  - 2092
VL  - 21
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.2049/
DO  - 10.2140/gt.2017.21.2049
ID  - GT_2017_21_4_a3
ER  - 
%0 Journal Article
%A Fang, Bohan
%A Liu, Chiu-Chu
%A Zong, Zhengyu
%T The Eynard–Orantin recursion and equivariant mirror symmetry for the projective line
%J Geometry & topology
%D 2017
%P 2049-2092
%V 21
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.2049/
%R 10.2140/gt.2017.21.2049
%F GT_2017_21_4_a3
Fang, Bohan; Liu, Chiu-Chu; Zong, Zhengyu. The Eynard–Orantin recursion and equivariant mirror symmetry for the projective line. Geometry & topology, Tome 21 (2017) no. 4, pp. 2049-2092. doi : 10.2140/gt.2017.21.2049. http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.2049/

[1] G Borot, B Eynard, M Mulase, B Safnuk, A matrix model for simple Hurwitz numbers, and topological recursion, J. Geom. Phys. 61 (2011) 522 | DOI

[2] V Bouchard, M Mariño, Hurwitz numbers, matrix models and enumerative geometry, from: "From Hodge theory to integrability and TQFT tt∗–geometry" (editors R Y Donagi, K Wendland), Proc. Sympos. Pure Math. 78, Amer. Math. Soc. (2008) 263 | DOI

[3] B Dubrovin, Geometry of 2D topological field theories, from: "Integrable systems and quantum groups" (editors M Francaviglia, S Greco), Lecture Notes in Math. 1620, Springer (1996) 120 | DOI

[4] P Dunin-Barkowski, M Kazarian, N Orantin, S Shadrin, L Spitz, Polynomiality of Hurwitz numbers, Bouchard–Mariño conjecture, and a new proof of the ELSV formula, Adv. Math. 279 (2015) 67 | DOI

[5] P Dunin-Barkowski, N Orantin, S Shadrin, L Spitz, Identification of the Givental formula with the spectral curve topological recursion procedure, Comm. Math. Phys. 328 (2014) 669 | DOI

[6] T Ekedahl, S Lando, M Shapiro, A Vainshtein, Hurwitz numbers and intersections on moduli spaces of curves, Invent. Math. 146 (2001) 297 | DOI

[7] B Eynard, Intersection numbers of spectral curves, preprint (2011)

[8] B Eynard, Invariants of spectral curves and intersection theory of moduli spaces of complex curves, Commun. Number Theory Phys. 8 (2014) 541 | DOI

[9] B Eynard, M Mulase, B Safnuk, The Laplace transform of the cut-and-join equation and the Bouchard–Mariño conjecture on Hurwitz numbers, Publ. Res. Inst. Math. Sci. 47 (2011) 629 | DOI

[10] B Eynard, N Orantin, Invariants of algebraic curves and topological expansion, Commun. Number Theory Phys. 1 (2007) 347 | DOI

[11] B Eynard, N Orantin, Computation of open Gromov–Witten invariants for toric Calabi–Yau 3–folds by topological recursion, a proof of the BKMP conjecture, Comm. Math. Phys. 337 (2015) 483 | DOI

[12] B Fang, Homological mirror symmetry is T–duality for Pn, Commun. Number Theory Phys. 2 (2008) 719 | DOI

[13] B Fang, Central charges of T–dual branes for toric varieties, preprint (2016)

[14] B Fang, C C M Liu, D Treumann, E Zaslow, T–duality and homological mirror symmetry for toric varieties, Adv. Math. 229 (2012) 1875 | DOI

[15] B Fang, C C M Liu, Z Zong, All genus open-closed mirror symmetry for affine toric Calabi–Yau 3–orbifolds, preprint (2013)

[16] J D Fay, Theta functions on Riemann surfaces, 352, Springer (1973) | DOI

[17] A B Givental, Equivariant Gromov–Witten invariants, Internat. Math. Res. Notices 1996 (1996) 613 | DOI

[18] A Givental, Elliptic Gromov–Witten invariants and the generalized mirror conjecture, from: "Integrable systems and algebraic geometry" (editors M H Saito, Y Shimizu, K Ueno), World Sci. (1998) 107

[19] A B Givental, Gromov–Witten invariants and quantization of quadratic Hamiltonians, Mosc. Math. J. 1 (2001) 551

[20] A B Givental, Semisimple Frobenius structures at higher genus, Internat. Math. Res. Notices 2001 (2001) 1265 | DOI

[21] T Graber, R Vakil, Hodge integrals and Hurwitz numbers via virtual localization, Compositio Math. 135 (2003) 25 | DOI

[22] H Iritani, An integral structure in quantum cohomology and mirror symmetry for toric orbifolds, Adv. Math. 222 (2009) 1016 | DOI

[23] I Kostov, N Orantin, CFT and topological recursion, J. High Energy Phys. (2010) | DOI

[24] Y P Lee, R Pandharipande, Frobenius manifolds, Gromov–Witten theory, and Virasoro constraints, preprint (2004)

[25] B H Lian, K Liu, S T Yau, Mirror principle, I, Asian J. Math. 1 (1997) 729 | DOI

[26] P Norbury, N Scott, Gromov–Witten invariants of P1 and Eynard–Orantin invariants, Geom. Topol. 18 (2014) 1865 | DOI

[27] A Okounkov, R Pandharipande, Gromov–Witten theory, Hurwitz theory, and completed cycles, Ann. of Math. 163 (2006) 517 | DOI

[28] A Okounkov, R Pandharipande, The equivariant Gromov–Witten theory of P1, Ann. of Math. 163 (2006) 561 | DOI

[29] J S Song, Y S Song, On a conjecture of Givental, J. Math. Phys. 45 (2004) 4539 | DOI

Cité par Sources :