Growth and order of automorphisms of free groups and free Burnside groups
Geometry & topology, Tome 21 (2017) no. 4, pp. 1969-2014.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We prove that an outer automorphism of the free group is exponentially growing if and only if it induces an outer automorphism of infinite order of free Burnside groups with sufficiently large odd exponent.

DOI : 10.2140/gt.2017.21.1969
Classification : 20E05, 20E36, 20F28, 20F50, 20F65, 68R15
Keywords: automorphism groups, free groups, Burnside groups, growth of automorphisms, train-track theory

Coulon, Rémi 1 ; Hilion, Arnaud 2

1 Institut de Recherche Mathématique de Rennes - UMR 6625, CNRS - Université de Rennes 1, Campus de Beaulieu, bâtiments 22 et 23, 263 avenue du Général Leclerc, CS 74205, 35042 Rennes Cedex, France
2 I2M UMR 7373 - Centre de Mathématiques et Informatique, Aix Marseille Université, CNRS, Centrale Marseille, I2M, Marseille, France, Technopôle Château-Gombert, 39, rue F Joliot Curie, 13453 Marseille 13, France
@article{GT_2017_21_4_a1,
     author = {Coulon, R\'emi and Hilion, Arnaud},
     title = {Growth and order of automorphisms of free groups and free {Burnside} groups},
     journal = {Geometry & topology},
     pages = {1969--2014},
     publisher = {mathdoc},
     volume = {21},
     number = {4},
     year = {2017},
     doi = {10.2140/gt.2017.21.1969},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.1969/}
}
TY  - JOUR
AU  - Coulon, Rémi
AU  - Hilion, Arnaud
TI  - Growth and order of automorphisms of free groups and free Burnside groups
JO  - Geometry & topology
PY  - 2017
SP  - 1969
EP  - 2014
VL  - 21
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.1969/
DO  - 10.2140/gt.2017.21.1969
ID  - GT_2017_21_4_a1
ER  - 
%0 Journal Article
%A Coulon, Rémi
%A Hilion, Arnaud
%T Growth and order of automorphisms of free groups and free Burnside groups
%J Geometry & topology
%D 2017
%P 1969-2014
%V 21
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.1969/
%R 10.2140/gt.2017.21.1969
%F GT_2017_21_4_a1
Coulon, Rémi; Hilion, Arnaud. Growth and order of automorphisms of free groups and free Burnside groups. Geometry & topology, Tome 21 (2017) no. 4, pp. 1969-2014. doi : 10.2140/gt.2017.21.1969. http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.1969/

[1] S I Adian, The Burnside problem and identities in groups, 95, Springer (1979)

[2] P Arnoux, V Berthé, A Hilion, A Siegel, Fractal representation of the attractive lamination of an automorphism of the free group, Ann. Inst. Fourier (Grenoble) 56 (2006) 2161 | DOI

[3] M Bestvina, M Feighn, M Handel, Laminations, trees, and irreducible automorphisms of free groups, Geom. Funct. Anal. 7 (1997) 215 | DOI

[4] M Bestvina, M Feighn, M Handel, The Tits alternative for Out(Fn), I : Dynamics of exponentially-growing automorphisms, Ann. of Math. 151 (2000) 517 | DOI

[5] M Bestvina, M Feighn, M Handel, The Tits alternative for Out(Fn), II : A Kolchin type theorem, Ann. of Math. 161 (2005) 1 | DOI

[6] M Bestvina, M Handel, Train tracks and automorphisms of free groups, Ann. of Math. 135 (1992) 1 | DOI

[7] W Burnside, On an unsettled question in the theory of discontinuous groups, Quart. J. 33 (1902) 230

[8] E A Cherepanov, Free semigroup in the group of automorphisms of the free Burnside group, Comm. Algebra 33 (2005) 539 | DOI

[9] M Clay, A Pettet, Twisting out fully irreducible automorphisms, Geom. Funct. Anal. 20 (2010) 657 | DOI

[10] M M Cohen, M Lustig, Very small group actions on R–trees and Dehn twist automorphisms, Topology 34 (1995) 575 | DOI

[11] M Coornaert, T Delzant, A Papadopoulos, Géométrie et théorie des groupes, 1441, Springer (1990) | DOI

[12] R Coulon, A criterion for detecting trivial elements of Burnside groups, preprint (2012)

[13] R Coulon, Outer automorphisms of free Burnside groups, Comment. Math. Helv. 88 (2013) 789 | DOI

[14] R Coulon, On the geometry of Burnside quotients of torsion free hyperbolic groups, Internat. J. Algebra Comput. 24 (2014) 251 | DOI

[15] R B Coulon, Partial periodic quotients of groups acting on a hyperbolic space, Ann. Inst. Fourier (Grenoble) 66 (2016) 1773 | DOI

[16] M Culler, J W Morgan, Group actions on R–trees, Proc. London Math. Soc. 55 (1987) 571 | DOI

[17] T Delzant, M Gromov, Courbure mésoscopique et théorie de la toute petite simplification, J. Topol. 1 (2008) 804 | DOI

[18] D Gaboriau, A Jaeger, G Levitt, M Lustig, An index for counting fixed points of automorphisms of free groups, Duke Math. J. 93 (1998) 425 | DOI

[19] F Gautero, Combinatorial mapping-torus, branched surfaces and free group automorphisms, Ann. Sc. Norm. Super. Pisa Cl. Sci. 6 (2007) 405

[20] F Gautero, M Lustig, The mapping-torus of a free group automorphism is hyperbolic relative to the canonical subgroups of polynomial growth, preprint (2007)

[21] M Hall Jr., Solution of the Burnside problem for exponent six, Illinois J. Math. 2 (1958) 764

[22] S V Ivanov, The free Burnside groups of sufficiently large exponents, Internat. J. Algebra Comput. 4 (1994) 1 | DOI

[23] J Karhumäki, On cube-free ω–words generated by binary morphisms, Discrete Appl. Math. 5 (1983) 279 | DOI

[24] F Levi, B L Van Der Waerden, Über eine besondere Klasse von Gruppen, Abh. Math. Sem. Univ. Hamburg 9 (1933) 154 | DOI

[25] G Levitt, Counting growth types of automorphisms of free groups, Geom. Funct. Anal. 19 (2009) 1119 | DOI

[26] I G Lysënok, Infinite Burnside groups of even period, Izv. Ross. Akad. Nauk Ser. Mat. 60 (1996) 3 | DOI

[27] B Mossé, Puissances de mots et reconnaissabilité des points fixes d’une substitution, Theoret. Comput. Sci. 99 (1992) 327 | DOI

[28] J Nielsen, Die Isomorphismen der allgemeinen, unendlichen Gruppe mit zwei Erzeugenden, Math. Ann. 78 (1917) 385 | DOI

[29] P S Novikov, S I Adjan, Infinite periodic groups, I, Izv. Akad. Nauk SSSR Ser. Mat. 32 (1968) 212

[30] P S Novikov, S I Adjan, Infinite periodic groups, II, Izv. Akad. Nauk SSSR Ser. Mat. 32 (1968) 251

[31] P S Novikov, S I Adjan, Infinite periodic groups, III, Izv. Akad. Nauk SSSR Ser. Mat. 32 (1968) 709

[32] A Y Ol’Shanskiĭ, The Novikov–Adyan theorem, Mat. Sb. 118(160) (1982) 203, 287

[33] A Y Ol’Shanskiĭ, Geometry of defining relations in groups, 70, Kluwer (1991) | DOI

[34] D Osin, Small cancellations over relatively hyperbolic groups and embedding theorems, Ann. of Math. (2) 172 (2010) 1 | DOI

[35] I N Sanov, Solution of Burnside’s problem for exponent 4, Leningrad State Univ. Annals Math. Ser. 10 (1940) 166

[36] E Seneta, Non-negative matrices and Markov chains, Springer (2006) | DOI

[37] W P Thurston, On the geometry and dynamics of diffeomorphisms of surfaces, Bull. Amer. Math. Soc. 19 (1988) 417 | DOI

Cité par Sources :