Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We prove universality theorems (“Murphy’s laws”) for representation varieties of fundamental groups of closed –dimensional manifolds. We show that germs of –representation schemes of such groups are essentially the same as germs of schemes over of finite type.
Kapovich, Michael 1 ; Millson, John 2
@article{GT_2017_21_4_a0, author = {Kapovich, Michael and Millson, John}, title = {On representation varieties of 3{\textendash}manifold groups}, journal = {Geometry & topology}, pages = {1931--1968}, publisher = {mathdoc}, volume = {21}, number = {4}, year = {2017}, doi = {10.2140/gt.2017.21.1931}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.1931/} }
TY - JOUR AU - Kapovich, Michael AU - Millson, John TI - On representation varieties of 3–manifold groups JO - Geometry & topology PY - 2017 SP - 1931 EP - 1968 VL - 21 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.1931/ DO - 10.2140/gt.2017.21.1931 ID - GT_2017_21_4_a0 ER -
Kapovich, Michael; Millson, John. On representation varieties of 3–manifold groups. Geometry & topology, Tome 21 (2017) no. 4, pp. 1931-1968. doi : 10.2140/gt.2017.21.1931. http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.1931/
[1] The deformation theory of representations of fundamental groups of compact Kähler manifolds, Inst. Hautes Études Sci. Publ. Math. 67 (1988) 43 | DOI
, ,[2] Singularities and Poisson geometry of certain representation spaces, from: "Quantization of singular symplectic quotients" (editors N P Landsman, M Pflaum, M Schlichenmaier), Progr. Math. 198, Birkhäuser (2001) 119 | DOI
,[3] Reflection groups and Coxeter groups, 29, Cambridge University Press (1997) | DOI
,[4] Deformation spaces associated to compact hyperbolic manifolds, from: "Discrete groups in geometry and analysis" (editor R Howe), Progr. Math. 67, Birkhäuser (1987) 48 | DOI
, ,[5] On the deformation theory of representations of fundamental groups of compact hyperbolic 3–manifolds, Topology 35 (1996) 1085 | DOI
, ,[6] On representation varieties of Artin groups, projective arrangements and the fundamental groups of smooth complex algebraic varieties, Inst. Hautes Études Sci. Publ. Math. 88 (1998) 5 | DOI
, ,[7] Moduli spaces of linkages and arrangements, from: "Advances in geometry" (editors J L Brylinski, R Brylinski, V Nistor, B Tsygan, P Xu), Progr. Math. 172, Birkhäuser (1999) 237 | DOI
, ,[8] Universality theorems for configuration spaces of planar linkages, Topology 41 (2002) 1051 | DOI
, ,[9] Chirurgie des grassmanniennes, 19, Amer. Math. Soc. (2003)
,[10] Varieties of representations of finitely generated groups, 336, Amer. Math. Soc. (1985) | DOI
, ,[11] The universality theorems on the classification problem of configuration varieties and convex polytopes varieties, from: "Topology and geometry—Rohlin Seminar" (editor O Y Viro), Lecture Notes in Math. 1346, Springer (1988) 527 | DOI
,[12] Telescopic actions, Geom. Funct. Anal. 22 (2012) 1814 | DOI
, ,[13] Moduli of toric vector bundles, Compos. Math. 144 (2008) 1199 | DOI
,[14] On the character varieties of finitely generated groups, Math. Res. Lett. 22 (2015) 579 | DOI
,[15] Realization spaces of polytopes, 1643, Springer (1996) | DOI
,[16] Representations of 3–manifold groups, from: "Handbook of geometric topology" (editors R J Daverman, R B Sher), North-Holland (2002) 955
,[17] Character varieties, Trans. Amer. Math. Soc. 364 (2012) 5173 | DOI
,[18] Murphy’s law in algebraic geometry : badly-behaved deformation spaces, Invent. Math. 164 (2006) 569 | DOI
,Cité par Sources :