On representation varieties of 3–manifold groups
Geometry & topology, Tome 21 (2017) no. 4, pp. 1931-1968.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We prove universality theorems (“Murphy’s laws”) for representation varieties of fundamental groups of closed 3–dimensional manifolds. We show that germs of  SL(2)–representation schemes of such groups are essentially the same as germs of schemes over of finite type.

DOI : 10.2140/gt.2017.21.1931
Classification : 14B12, 20F29, 57M05
Keywords: character varieties, $3$–manifold groups

Kapovich, Michael 1 ; Millson, John 2

1 Department of Mathematics, University of California, Davis, 1 Shields Ave, Davis, CA 95616, United States, Korea Institute for Advanced Study, 207-43 Cheongnyangri-dong, Dongdaemun-gu, Seoul, South Korea
2 Department of Mathematics, University of Maryland, College Park, College Park, MD 20742, United States
@article{GT_2017_21_4_a0,
     author = {Kapovich, Michael and Millson, John},
     title = {On representation varieties of 3{\textendash}manifold groups},
     journal = {Geometry & topology},
     pages = {1931--1968},
     publisher = {mathdoc},
     volume = {21},
     number = {4},
     year = {2017},
     doi = {10.2140/gt.2017.21.1931},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.1931/}
}
TY  - JOUR
AU  - Kapovich, Michael
AU  - Millson, John
TI  - On representation varieties of 3–manifold groups
JO  - Geometry & topology
PY  - 2017
SP  - 1931
EP  - 1968
VL  - 21
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.1931/
DO  - 10.2140/gt.2017.21.1931
ID  - GT_2017_21_4_a0
ER  - 
%0 Journal Article
%A Kapovich, Michael
%A Millson, John
%T On representation varieties of 3–manifold groups
%J Geometry & topology
%D 2017
%P 1931-1968
%V 21
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.1931/
%R 10.2140/gt.2017.21.1931
%F GT_2017_21_4_a0
Kapovich, Michael; Millson, John. On representation varieties of 3–manifold groups. Geometry & topology, Tome 21 (2017) no. 4, pp. 1931-1968. doi : 10.2140/gt.2017.21.1931. http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.1931/

[1] W M Goldman, J J Millson, The deformation theory of representations of fundamental groups of compact Kähler manifolds, Inst. Hautes Études Sci. Publ. Math. 67 (1988) 43 | DOI

[2] J Huebschmann, Singularities and Poisson geometry of certain representation spaces, from: "Quantization of singular symplectic quotients" (editors N P Landsman, M Pflaum, M Schlichenmaier), Progr. Math. 198, Birkhäuser (2001) 119 | DOI

[3] J E Humphreys, Reflection groups and Coxeter groups, 29, Cambridge University Press (1997) | DOI

[4] D Johnson, J J Millson, Deformation spaces associated to compact hyperbolic manifolds, from: "Discrete groups in geometry and analysis" (editor R Howe), Progr. Math. 67, Birkhäuser (1987) 48 | DOI

[5] M Kapovich, J J Millson, On the deformation theory of representations of fundamental groups of compact hyperbolic 3–manifolds, Topology 35 (1996) 1085 | DOI

[6] M Kapovich, J J Millson, On representation varieties of Artin groups, projective arrangements and the fundamental groups of smooth complex algebraic varieties, Inst. Hautes Études Sci. Publ. Math. 88 (1998) 5 | DOI

[7] M Kapovich, J J Millson, Moduli spaces of linkages and arrangements, from: "Advances in geometry" (editors J L Brylinski, R Brylinski, V Nistor, B Tsygan, P Xu), Progr. Math. 172, Birkhäuser (1999) 237 | DOI

[8] M Kapovich, J J Millson, Universality theorems for configuration spaces of planar linkages, Topology 41 (2002) 1051 | DOI

[9] L Lafforgue, Chirurgie des grassmanniennes, 19, Amer. Math. Soc. (2003)

[10] A Lubotzky, A R Magid, Varieties of representations of finitely generated groups, 336, Amer. Math. Soc. (1985) | DOI

[11] N E Mnëv, The universality theorems on the classification problem of configuration varieties and convex polytopes varieties, from: "Topology and geometry—Rohlin Seminar" (editor O Y Viro), Lecture Notes in Math. 1346, Springer (1988) 527 | DOI

[12] D Panov, A Petrunin, Telescopic actions, Geom. Funct. Anal. 22 (2012) 1814 | DOI

[13] S Payne, Moduli of toric vector bundles, Compos. Math. 144 (2008) 1199 | DOI

[14] I A Rapinchuk, On the character varieties of finitely generated groups, Math. Res. Lett. 22 (2015) 579 | DOI

[15] J Richter-Gebert, Realization spaces of polytopes, 1643, Springer (1996) | DOI

[16] P B Shalen, Representations of 3–manifold groups, from: "Handbook of geometric topology" (editors R J Daverman, R B Sher), North-Holland (2002) 955

[17] A S Sikora, Character varieties, Trans. Amer. Math. Soc. 364 (2012) 5173 | DOI

[18] R Vakil, Murphy’s law in algebraic geometry : badly-behaved deformation spaces, Invent. Math. 164 (2006) 569 | DOI

Cité par Sources :