Dominating surface group representations and deforming closed anti-de Sitter 3–manifolds
Geometry & topology, Tome 21 (2017) no. 1, pp. 193-214.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Let S be a closed oriented surface of negative Euler characteristic and M a complete contractible Riemannian manifold. A Fuchsian representation j : π1(S) Isom+(2) strictly dominates a representation ρ: π1(S) Isom(M) if there exists a (j,ρ)–equivariant map from 2 to M that is λ–Lipschitz for some λ < 1. In a previous paper by Deroin and Tholozan, the authors construct a map Ψρ from the Teichmüller space T (S) of the surface S to itself and prove that, when M has sectional curvature at most 1, the image of Ψρ lies (almost always) in the domain Dom(ρ) of Fuchsian representations strictly dominating ρ. Here we prove that Ψρ: T (S) Dom(ρ) is a homeomorphism. As a consequence, we are able to describe the topology of the space of pairs of representations (j,ρ) from π1(S) to Isom+(2) with j Fuchsian strictly dominating ρ. In particular, we obtain that its connected components are classified by the Euler class of ρ. The link with anti-de Sitter geometry comes from a theorem of Kassel, stating that those pairs parametrize deformation spaces of anti-de Sitter structures on closed 3–manifolds.

DOI : 10.2140/gt.2017.21.193
Classification : 57M50, 58E20, 53C50, 32G15
Keywords: anti-de Sitter, representations of surface groups, Teichmüller, harmonic maps, deformation space

Tholozan, Nicolas 1

1 University of Luxembourg, Campus Kirchberg, Mathematics Research Unit, BLG, 6, rue Richard Coudenhove-Kalergi, L-1359, Luxembourg
@article{GT_2017_21_1_a3,
     author = {Tholozan, Nicolas},
     title = {Dominating surface group representations and deforming closed anti-de {Sitter} 3{\textendash}manifolds},
     journal = {Geometry & topology},
     pages = {193--214},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2017},
     doi = {10.2140/gt.2017.21.193},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.193/}
}
TY  - JOUR
AU  - Tholozan, Nicolas
TI  - Dominating surface group representations and deforming closed anti-de Sitter 3–manifolds
JO  - Geometry & topology
PY  - 2017
SP  - 193
EP  - 214
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.193/
DO  - 10.2140/gt.2017.21.193
ID  - GT_2017_21_1_a3
ER  - 
%0 Journal Article
%A Tholozan, Nicolas
%T Dominating surface group representations and deforming closed anti-de Sitter 3–manifolds
%J Geometry & topology
%D 2017
%P 193-214
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.193/
%R 10.2140/gt.2017.21.193
%F GT_2017_21_1_a3
Tholozan, Nicolas. Dominating surface group representations and deforming closed anti-de Sitter 3–manifolds. Geometry & topology, Tome 21 (2017) no. 1, pp. 193-214. doi : 10.2140/gt.2017.21.193. http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.193/

[1] T Barbot, F Bonsante, J Danciger, W M Goldman, F Guéritaud, F Kassel, K Krasnov, J M Schlenker, A Zeghib, Some open questions on anti-de Sitter geometry, preprint (2012)

[2] Y Carrière, Autour de la conjecture de L Markus sur les variétés affines, Invent. Math. 95 (1989) 615 | DOI

[3] K Corlette, Flat G–bundles with canonical metrics, J. Differential Geom. 28 (1988) 361

[4] J Danciger, Ideal triangulations and geometric transitions, J. Topol. 7 (2014) 1118 | DOI

[5] G D Daskalopoulos, R A Wentworth, Harmonic maps and Teichmüller theory, from: "Handbook of Teichmüller theory, I", IRMA Lect. Math. Theor. Phys. 11, Eur. Math. Soc. (2007) 33 | DOI

[6] B Deroin, N Tholozan, Dominating surface group representations by Fuchsian ones, Int. Math. Res. Not. 2016 (2016) 4145 | DOI

[7] S K Donaldson, Twisted harmonic maps and the self-duality equations, Proc. London Math. Soc. 55 (1987) 127 | DOI

[8] J Eells Jr., J H Sampson, Harmonic mappings of Riemannian manifolds, Amer. J. Math. 86 (1964) 109 | DOI

[9] W M Goldman, Discontinuous groups and the Euler class, PhD thesis, University of California, Berkeley (1980)

[10] W M Goldman, Nonstandard Lorentz space forms, J. Differential Geom. 21 (1985) 301

[11] F Guéritaud, F Kassel, Maximally stretched laminations on geometrically finite hyperbolic manifolds, preprint (2013)

[12] F Guéritaud, F Kassel, M Wolff, Compact anti–de Sitter 3–manifolds and folded hyperbolic structures on surfaces, Pacific J. Math. 275 (2015) 325 | DOI

[13] N J Hitchin, The self-duality equations on a Riemann surface, Proc. London Math. Soc. 55 (1987) 59 | DOI

[14] F Kassel, Quotients compacts d’espaces homogènes réels ou p–adiques, PhD thesis, Université Paris-Sud 11 (2009)

[15] B Klingler, Complétude des variétés lorentziennes à courbure constante, Math. Ann. 306 (1996) 353 | DOI

[16] R S Kulkarni, F Raymond, 3–dimensional Lorentz space-forms and Seifert fiber spaces, J. Differential Geom. 21 (1985) 231

[17] F Labourie, Existence d’applications harmoniques tordues à valeurs dans les variétés à courbure négative, Proc. Amer. Math. Soc. 111 (1991) 877 | DOI

[18] F Salein, Variétés anti-de Sitter de dimension 3 exotiques, Ann. Inst. Fourier (Grenoble) 50 (2000) 257 | DOI

[19] J H Sampson, Some properties and applications of harmonic mappings, Ann. Sci. École Norm. Sup. 11 (1978) 211

[20] R Schoen, S T Yau, On univalent harmonic maps between surfaces, Invent. Math. 44 (1978) 265 | DOI

[21] N Tholozan, Uniformisation des variétés pseudo-riemanniennes localement homogènes, PhD thesis, Université de Nice Sophia-Antipolis (2014)

[22] W P Thurston, Minimal stretch maps between hyperbolic surfaces, preprint (1986)

[23] A J Tromba, Teichmüller theory in Riemannian geometry, Birkhäuser (1992) 220 | DOI

[24] R A Wentworth, Energy of harmonic maps and Gardiner’s formula, from: "In the tradition of Ahlfors–Bers, IV" (editors D Canary, J Gilman, J Heinonen, H Masur), Contemp. Math. 432, Amer. Math. Soc. (2007) 221 | DOI

[25] M Wolf, The Teichmüller theory of harmonic maps, J. Differential Geom. 29 (1989) 449

[26] S A Wolpert, Geodesic length functions and the Nielsen problem, J. Differential Geom. 25 (1987) 275

Cité par Sources :