Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Let be a closed oriented surface of negative Euler characteristic and a complete contractible Riemannian manifold. A Fuchsian representation strictly dominates a representation if there exists a –equivariant map from to that is –Lipschitz for some . In a previous paper by Deroin and Tholozan, the authors construct a map from the Teichmüller space of the surface to itself and prove that, when has sectional curvature at most , the image of lies (almost always) in the domain of Fuchsian representations strictly dominating . Here we prove that is a homeomorphism. As a consequence, we are able to describe the topology of the space of pairs of representations from to with Fuchsian strictly dominating . In particular, we obtain that its connected components are classified by the Euler class of . The link with anti-de Sitter geometry comes from a theorem of Kassel, stating that those pairs parametrize deformation spaces of anti-de Sitter structures on closed –manifolds.
Tholozan, Nicolas 1
@article{GT_2017_21_1_a3, author = {Tholozan, Nicolas}, title = {Dominating surface group representations and deforming closed anti-de {Sitter} 3{\textendash}manifolds}, journal = {Geometry & topology}, pages = {193--214}, publisher = {mathdoc}, volume = {21}, number = {1}, year = {2017}, doi = {10.2140/gt.2017.21.193}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.193/} }
TY - JOUR AU - Tholozan, Nicolas TI - Dominating surface group representations and deforming closed anti-de Sitter 3–manifolds JO - Geometry & topology PY - 2017 SP - 193 EP - 214 VL - 21 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.193/ DO - 10.2140/gt.2017.21.193 ID - GT_2017_21_1_a3 ER -
%0 Journal Article %A Tholozan, Nicolas %T Dominating surface group representations and deforming closed anti-de Sitter 3–manifolds %J Geometry & topology %D 2017 %P 193-214 %V 21 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.193/ %R 10.2140/gt.2017.21.193 %F GT_2017_21_1_a3
Tholozan, Nicolas. Dominating surface group representations and deforming closed anti-de Sitter 3–manifolds. Geometry & topology, Tome 21 (2017) no. 1, pp. 193-214. doi : 10.2140/gt.2017.21.193. http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.193/
[1] Some open questions on anti-de Sitter geometry, preprint (2012)
, , , , , , , , ,[2] Autour de la conjecture de L Markus sur les variétés affines, Invent. Math. 95 (1989) 615 | DOI
,[3] Flat G–bundles with canonical metrics, J. Differential Geom. 28 (1988) 361
,[4] Ideal triangulations and geometric transitions, J. Topol. 7 (2014) 1118 | DOI
,[5] Harmonic maps and Teichmüller theory, from: "Handbook of Teichmüller theory, I", IRMA Lect. Math. Theor. Phys. 11, Eur. Math. Soc. (2007) 33 | DOI
, ,[6] Dominating surface group representations by Fuchsian ones, Int. Math. Res. Not. 2016 (2016) 4145 | DOI
, ,[7] Twisted harmonic maps and the self-duality equations, Proc. London Math. Soc. 55 (1987) 127 | DOI
,[8] Harmonic mappings of Riemannian manifolds, Amer. J. Math. 86 (1964) 109 | DOI
, ,[9] Discontinuous groups and the Euler class, PhD thesis, University of California, Berkeley (1980)
,[10] Nonstandard Lorentz space forms, J. Differential Geom. 21 (1985) 301
,[11] Maximally stretched laminations on geometrically finite hyperbolic manifolds, preprint (2013)
, ,[12] Compact anti–de Sitter 3–manifolds and folded hyperbolic structures on surfaces, Pacific J. Math. 275 (2015) 325 | DOI
, , ,[13] The self-duality equations on a Riemann surface, Proc. London Math. Soc. 55 (1987) 59 | DOI
,[14] Quotients compacts d’espaces homogènes réels ou p–adiques, PhD thesis, Université Paris-Sud 11 (2009)
,[15] Complétude des variétés lorentziennes à courbure constante, Math. Ann. 306 (1996) 353 | DOI
,[16] 3–dimensional Lorentz space-forms and Seifert fiber spaces, J. Differential Geom. 21 (1985) 231
, ,[17] Existence d’applications harmoniques tordues à valeurs dans les variétés à courbure négative, Proc. Amer. Math. Soc. 111 (1991) 877 | DOI
,[18] Variétés anti-de Sitter de dimension 3 exotiques, Ann. Inst. Fourier (Grenoble) 50 (2000) 257 | DOI
,[19] Some properties and applications of harmonic mappings, Ann. Sci. École Norm. Sup. 11 (1978) 211
,[20] On univalent harmonic maps between surfaces, Invent. Math. 44 (1978) 265 | DOI
, ,[21] Uniformisation des variétés pseudo-riemanniennes localement homogènes, PhD thesis, Université de Nice Sophia-Antipolis (2014)
,[22] Minimal stretch maps between hyperbolic surfaces, preprint (1986)
,[23] Teichmüller theory in Riemannian geometry, Birkhäuser (1992) 220 | DOI
,[24] Energy of harmonic maps and Gardiner’s formula, from: "In the tradition of Ahlfors–Bers, IV" (editors D Canary, J Gilman, J Heinonen, H Masur), Contemp. Math. 432, Amer. Math. Soc. (2007) 221 | DOI
,[25] The Teichmüller theory of harmonic maps, J. Differential Geom. 29 (1989) 449
,[26] Geodesic length functions and the Nielsen problem, J. Differential Geom. 25 (1987) 275
,Cité par Sources :