Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We prove we can build (transitive or nontransitive) Anosov flows on closed three-dimensional manifolds by gluing together filtrating neighborhoods of hyperbolic sets. We give several applications of this result; for example:
Béguin, François 1 ; Bonatti, Christian 2 ; Yu, Bin 3
@article{GT_2017_21_3_a7, author = {B\'eguin, Fran\c{c}ois and Bonatti, Christian and Yu, Bin}, title = {Building {Anosov} flows on 3{\textendash}manifolds}, journal = {Geometry & topology}, pages = {1837--1930}, publisher = {mathdoc}, volume = {21}, number = {3}, year = {2017}, doi = {10.2140/gt.2017.21.1837}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.1837/} }
TY - JOUR AU - Béguin, François AU - Bonatti, Christian AU - Yu, Bin TI - Building Anosov flows on 3–manifolds JO - Geometry & topology PY - 2017 SP - 1837 EP - 1930 VL - 21 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.1837/ DO - 10.2140/gt.2017.21.1837 ID - GT_2017_21_3_a7 ER -
Béguin, François; Bonatti, Christian; Yu, Bin. Building Anosov flows on 3–manifolds. Geometry & topology, Tome 21 (2017) no. 3, pp. 1837-1930. doi : 10.2140/gt.2017.21.1837. http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.1837/
[1] Caractérisation des flots d’Anosov en dimension 3 par leurs feuilletages faibles, Ergodic Theory Dynam. Systems 15 (1995) 247 | DOI
,[2] Mise en position optimale de tores par rapport à un flot d’Anosov, Comment. Math. Helv. 70 (1995) 113 | DOI
,[3] Flots d’Anosov sur les variétés graphées au sens de Waldhausen, Ann. Inst. Fourier (Grenoble) 46 (1996) 1451
,[4] Generalizations of the Bonatti–Langevin example of Anosov flow and their classification up to topological equivalence, Comm. Anal. Geom. 6 (1998) 749 | DOI
,[5] Pseudo-Anosov flows in toroidal manifolds, Geom. Topol. 17 (2013) 1877 | DOI
, ,[6] Flots de Smale en dimension 3 : présentations finies de voisinages invariants d’ensembles selles, Topology 41 (2002) 119 | DOI
, ,[7] A spectral-like decomposition for transitive Anosov flows in dimension three, Math. Z. 282 (2016) 889 | DOI
, , ,[8] Construction of transitive Anosov flows in dimension three by gluing hyperbolic plugs together: influence of the gluing diffeomorphisms, in preparation
, ,[9] Un exemple de flot d’Anosov transitif transverse à un tore et non conjugué à une suspension, Ergodic Theory Dynam. Systems 14 (1994) 633 | DOI
, ,[10] Separating the basic sets of a nontransitive Anosov flow, Bull. London Math. Soc. 25 (1993) 487 | DOI
,[11] Anosov flows on three manifolds, PhD thesis, University of California, Berkeley (1984)
,[12] Branched surfaces and attractors, I : Dynamic branched surfaces, Trans. Amer. Math. Soc. 336 (1993) 759 | DOI
,[13] Anosov flows in 3–manifolds, Ann. of Math. 139 (1994) 79 | DOI
,[14] The structure of branching in Anosov flows of 3–manifolds, Comment. Math. Helv. 73 (1998) 259 | DOI
,[15] Contact Anosov flows on hyperbolic 3–manifolds, Geom. Topol. 17 (2013) 1225 | DOI
, ,[16] Anomalous Anosov flows, from: "Global theory of dynamical systems" (editors Z Nitecki, C Robinson), Lecture Notes in Math. 819, Springer (1980) 158 | DOI
, ,[17] Transitive Anosov flows and pseudo-Anosov maps, Topology 22 (1983) 299 | DOI
,[18] Knots and links in three-dimensional flows, 1654, Springer (1997) | DOI
, , ,[19] Flots d’Anosov sur les 3–variétés fibrées en cercles, Ergodic Theory Dynam. Systems 4 (1984) 67 | DOI
,[20] Flots d’Anosov dont les feuilletages stables sont différentiables, Ann. Sci. École Norm. Sup. 20 (1987) 251
,[21] Dehn surgery on Anosov flows, from: "Geometric dynamics" (editor J Palis Jr.), Lecture Notes in Math. 1007, Springer (1983) 300 | DOI
,[22] Anosov flows on new three manifolds, Invent. Math. 59 (1980) 95 | DOI
, ,[23] Hyperbolic dynamical systems, from: "Handbook of dynamical systems, 1A" (editors B Hasselblatt, A Katok), North-Holland (2002) 239 | DOI
,[24] Quadratic differentials with prescribed singularities and pseudo-Anosov diffeomorphisms, Comment. Math. Helv. 68 (1993) 289 | DOI
, ,[25] Geometric theory of dynamical systems, Springer (1982) | DOI
, ,[26] Hyperbolicity and sensitive chaotic dynamics at homoclinic bifurcations: fractal dimensions and infinitely many attractors, 35, Cambridge Univ. Press (1993)
, ,[27] Anosov flows, transversely affine foliations, and a conjecture of Verjovsky, J. London Math. Soc. 23 (1981) 359 | DOI
,[28] Differentiable dynamical systems, Bull. Amer. Math. Soc. 73 (1967) 747 | DOI
,[29] Hyperbolic structures on 3–manifolds, II : Surface groups and 3–manifolds which fiber over the circle, preprint (1998)
,Cité par Sources :