Building Anosov flows on 3–manifolds
Geometry & topology, Tome 21 (2017) no. 3, pp. 1837-1930.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We prove we can build (transitive or nontransitive) Anosov flows on closed three-dimensional manifolds by gluing together filtrating neighborhoods of hyperbolic sets. We give several applications of this result; for example:

DOI : 10.2140/gt.2017.21.1837
Classification : 37D20, 57M99
Keywords: Anosov flows, $3$–manifolds, hyperbolic plugs

Béguin, François 1 ; Bonatti, Christian 2 ; Yu, Bin 3

1 LAGA, UMR 7539 du CNRS, Université Paris 13 Nord, 99 ave. J B Clement, 93430 Villetaneuse, France
2 Institut de Mathematiques de Bourgogne, Universite de Bourgogne, 9 ave. A Savary, 21000 Dijon, France
3 School of Mathematical Sciences, Tongji University, Shanghai, 200092, China
@article{GT_2017_21_3_a7,
     author = {B\'eguin, Fran\c{c}ois and Bonatti, Christian and Yu, Bin},
     title = {Building {Anosov} flows on 3{\textendash}manifolds},
     journal = {Geometry & topology},
     pages = {1837--1930},
     publisher = {mathdoc},
     volume = {21},
     number = {3},
     year = {2017},
     doi = {10.2140/gt.2017.21.1837},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.1837/}
}
TY  - JOUR
AU  - Béguin, François
AU  - Bonatti, Christian
AU  - Yu, Bin
TI  - Building Anosov flows on 3–manifolds
JO  - Geometry & topology
PY  - 2017
SP  - 1837
EP  - 1930
VL  - 21
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.1837/
DO  - 10.2140/gt.2017.21.1837
ID  - GT_2017_21_3_a7
ER  - 
%0 Journal Article
%A Béguin, François
%A Bonatti, Christian
%A Yu, Bin
%T Building Anosov flows on 3–manifolds
%J Geometry & topology
%D 2017
%P 1837-1930
%V 21
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.1837/
%R 10.2140/gt.2017.21.1837
%F GT_2017_21_3_a7
Béguin, François; Bonatti, Christian; Yu, Bin. Building Anosov flows on 3–manifolds. Geometry & topology, Tome 21 (2017) no. 3, pp. 1837-1930. doi : 10.2140/gt.2017.21.1837. http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.1837/

[1] T Barbot, Caractérisation des flots d’Anosov en dimension 3 par leurs feuilletages faibles, Ergodic Theory Dynam. Systems 15 (1995) 247 | DOI

[2] T Barbot, Mise en position optimale de tores par rapport à un flot d’Anosov, Comment. Math. Helv. 70 (1995) 113 | DOI

[3] T Barbot, Flots d’Anosov sur les variétés graphées au sens de Waldhausen, Ann. Inst. Fourier (Grenoble) 46 (1996) 1451

[4] T Barbot, Generalizations of the Bonatti–Langevin example of Anosov flow and their classification up to topological equivalence, Comm. Anal. Geom. 6 (1998) 749 | DOI

[5] T Barbot, S R Fenley, Pseudo-Anosov flows in toroidal manifolds, Geom. Topol. 17 (2013) 1877 | DOI

[6] F Béguin, C Bonatti, Flots de Smale en dimension 3 : présentations finies de voisinages invariants d’ensembles selles, Topology 41 (2002) 119 | DOI

[7] F Beguin, C Bonatti, B Yu, A spectral-like decomposition for transitive Anosov flows in dimension three, Math. Z. 282 (2016) 889 | DOI

[8] F Béguin, B Yu, Construction of transitive Anosov flows in dimension three by gluing hyperbolic plugs together: influence of the gluing diffeomorphisms, in preparation

[9] C Bonatti, R Langevin, Un exemple de flot d’Anosov transitif transverse à un tore et non conjugué à une suspension, Ergodic Theory Dynam. Systems 14 (1994) 633 | DOI

[10] M Brunella, Separating the basic sets of a nontransitive Anosov flow, Bull. London Math. Soc. 25 (1993) 487 | DOI

[11] J Christy, Anosov flows on three manifolds, PhD thesis, University of California, Berkeley (1984)

[12] J Christy, Branched surfaces and attractors, I : Dynamic branched surfaces, Trans. Amer. Math. Soc. 336 (1993) 759 | DOI

[13] S R Fenley, Anosov flows in 3–manifolds, Ann. of Math. 139 (1994) 79 | DOI

[14] S R Fenley, The structure of branching in Anosov flows of 3–manifolds, Comment. Math. Helv. 73 (1998) 259 | DOI

[15] P Foulon, B Hasselblatt, Contact Anosov flows on hyperbolic 3–manifolds, Geom. Topol. 17 (2013) 1225 | DOI

[16] J Franks, B Williams, Anomalous Anosov flows, from: "Global theory of dynamical systems" (editors Z Nitecki, C Robinson), Lecture Notes in Math. 819, Springer (1980) 158 | DOI

[17] D Fried, Transitive Anosov flows and pseudo-Anosov maps, Topology 22 (1983) 299 | DOI

[18] R W Ghrist, P J Holmes, M C Sullivan, Knots and links in three-dimensional flows, 1654, Springer (1997) | DOI

[19] É Ghys, Flots d’Anosov sur les 3–variétés fibrées en cercles, Ergodic Theory Dynam. Systems 4 (1984) 67 | DOI

[20] É Ghys, Flots d’Anosov dont les feuilletages stables sont différentiables, Ann. Sci. École Norm. Sup. 20 (1987) 251

[21] S Goodman, Dehn surgery on Anosov flows, from: "Geometric dynamics" (editor J Palis Jr.), Lecture Notes in Math. 1007, Springer (1983) 300 | DOI

[22] M Handel, W P Thurston, Anosov flows on new three manifolds, Invent. Math. 59 (1980) 95 | DOI

[23] B Hasselblatt, Hyperbolic dynamical systems, from: "Handbook of dynamical systems, 1A" (editors B Hasselblatt, A Katok), North-Holland (2002) 239 | DOI

[24] H Masur, J Smillie, Quadratic differentials with prescribed singularities and pseudo-Anosov diffeomorphisms, Comment. Math. Helv. 68 (1993) 289 | DOI

[25] J Palis Jr., W De Melo, Geometric theory of dynamical systems, Springer (1982) | DOI

[26] J Palis, F Takens, Hyperbolicity and sensitive chaotic dynamics at homoclinic bifurcations: fractal dimensions and infinitely many attractors, 35, Cambridge Univ. Press (1993)

[27] J F Plante, Anosov flows, transversely affine foliations, and a conjecture of Verjovsky, J. London Math. Soc. 23 (1981) 359 | DOI

[28] S Smale, Differentiable dynamical systems, Bull. Amer. Math. Soc. 73 (1967) 747 | DOI

[29] W P Thurston, Hyperbolic structures on 3–manifolds, II : Surface groups and 3–manifolds which fiber over the circle, preprint (1998)

Cité par Sources :