Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
A hierarchy of a group is a rooted tree of groups obtained by iteratively passing to vertex groups of graphs of groups decompositions. We define a (relative) slender JSJ hierarchy for (almost) finitely presented groups and show that it is finite, provided the group in question doesn’t contain any slender subgroups with infinite dihedral quotients and satisfies an ascending chain condition on certain chains of subgroups of edge groups.
As a corollary, slender JSJ hierarchies of finitely presented subgroups of or of hyperbolic groups which are (virtually) without –torsion are finite.
Louder, Larsen 1 ; Touikan, Nicholas 2
@article{GT_2017_21_3_a6, author = {Louder, Larsen and Touikan, Nicholas}, title = {Strong accessibility for finitely presented groups}, journal = {Geometry & topology}, pages = {1805--1835}, publisher = {mathdoc}, volume = {21}, number = {3}, year = {2017}, doi = {10.2140/gt.2017.21.1805}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.1805/} }
TY - JOUR AU - Louder, Larsen AU - Touikan, Nicholas TI - Strong accessibility for finitely presented groups JO - Geometry & topology PY - 2017 SP - 1805 EP - 1835 VL - 21 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.1805/ DO - 10.2140/gt.2017.21.1805 ID - GT_2017_21_3_a6 ER -
Louder, Larsen; Touikan, Nicholas. Strong accessibility for finitely presented groups. Geometry & topology, Tome 21 (2017) no. 3, pp. 1805-1835. doi : 10.2140/gt.2017.21.1805. http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.1805/
[1] Bounding the complexity of simplicial group actions on trees, Invent. Math. 103 (1991) 449 | DOI
, ,[2] A counterexample to generalized accessibility, from: "Arboreal group theory" (editor R C Alperin), Math. Sci. Res. Inst. Publ. 19, Springer (1991) 133 | DOI
, ,[3] Finite subgroups of hyperbolic groups, Algebra i Logika 34 (1995) 619 | DOI
, ,[4] Relatively hyperbolic groups, Internat. J. Algebra Comput. 22 (2012) 1250016, 1 | DOI
,[5] Accessibilité hiérarchique des groupes de présentation finie, Topology 40 (2001) 617 | DOI
, ,[6] The accessibility of finitely presented groups, Invent. Math. 81 (1985) 449 | DOI
,[7] An inaccessible group, from: "Geometric group theory, Vol 1" (editors G A Niblo, M A Roller), London Math. Soc. Lecture Note Ser. 181, Cambridge Univ. Press (1993) 75 | DOI
,[8] JSJ-splittings for finitely presented groups over slender groups, Invent. Math. 135 (1999) 25 | DOI
, ,[9] JSJ-decompositions of finitely presented groups and complexes of groups, Geom. Funct. Anal. 16 (2006) 70 | DOI
, ,[10] Hyperbolic groups, from: "Essays in group theory" (editor S M Gersten), Math. Sci. Res. Inst. Publ. 8, Springer (1987) 75 | DOI
,[11] Dehn filling in relatively hyperbolic groups, Israel J. Math. 168 (2008) 317 | DOI
, ,[12] Cœur et nombre d’intersection pour les actions de groupes sur les arbres, Ann. Sci. École Norm. Sup. 38 (2005) 847 | DOI
,[13] Relative hyperbolicity and relative quasiconvexity for countable groups, Algebr. Geom. Topol. 10 (2010) 1807 | DOI
,[14] On the structure of two-generated hyperbolic groups, Math. Z. 231 (1999) 783 | DOI
, ,[15] Irreducible affine varieties over a free group, II : Systems in triangular quasi-quadratic form and description of residually free groups, J. Algebra 200 (1998) 517 | DOI
, ,[16] Strong accessibility of Coxeter groups over minimal splittings, J. Pure Appl. Algebra 216 (2012) 1102 | DOI
, ,[17] Polycyclic groups, 82, Cambridge University Press (1983) | DOI
,[18] Diophantine geometry over groups, I : Makanin–Razborov diagrams, Publ. Math. Inst. Hautes Études Sci. 93 (2001) 31 | DOI
,Cité par Sources :