Hierarchically hyperbolic spaces, I: Curve complexes for cubical groups
Geometry & topology, Tome 21 (2017) no. 3, pp. 1731-1804.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

In the context of CAT(0) cubical groups, we develop an analogue of the theory of curve complexes and subsurface projections. The role of the subsurfaces is played by a collection of convex subcomplexes called a factor system, and the role of the curve graph is played by the contact graph. There are a number of close parallels between the contact graph and the curve graph, including hyperbolicity, acylindricity of the action, the existence of hierarchy paths, and a Masur–Minsky-style distance formula.

We then define a hierarchically hyperbolic space; the class of such spaces includes a wide class of cubical groups (including all virtually compact special groups) as well as mapping class groups and Teichmüller space with any of the standard metrics. We deduce a number of results about these spaces, all of which are new for cubical or mapping class groups, and most of which are new for both. We show that the quasi-Lipschitz image from a ball in a nilpotent Lie group into a hierarchically hyperbolic space lies close to a product of hierarchy geodesics. We also prove a rank theorem for hierarchically hyperbolic spaces; this generalizes results of Behrstock and Minsky, of Eskin, Masur and Rafi, of Hamenstädt, and of Kleiner. We finally prove that each hierarchically hyperbolic group admits an acylindrical action on a hyperbolic space. This acylindricity result is new for cubical groups, in which case the hyperbolic space admitting the action is the contact graph; in the case of the mapping class group, this provides a new proof of a theorem of Bowditch.

DOI : 10.2140/gt.2017.21.1731
Classification : 20F36, 20F55, 20F65
Keywords: hierarchically hyperbolic, cube complexes, acylindrical, Teichmüller space, curve complex

Behrstock, Jason 1 ; Hagen, Mark 2 ; Sisto, Alessandro 3

1 The Graduate Center and Lehman College, CUNY, 365 5th Avenue, New York, NY 10036, United States, Barnard College, Columbia University, New York, NY, USA
2 Department of Pure Mathematics and Mathematical Statistics, University of Cambridge, Wilberforce Road, Cambridge, CB3 0WB, United Kingdom
3 Departement Mathematik HG G 28, ETH, Rämistrasse 101, CH-8092 Zürich, Switzerland
@article{GT_2017_21_3_a5,
     author = {Behrstock, Jason and Hagen, Mark and Sisto, Alessandro},
     title = {Hierarchically hyperbolic spaces, {I:} {Curve} complexes for cubical groups},
     journal = {Geometry & topology},
     pages = {1731--1804},
     publisher = {mathdoc},
     volume = {21},
     number = {3},
     year = {2017},
     doi = {10.2140/gt.2017.21.1731},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.1731/}
}
TY  - JOUR
AU  - Behrstock, Jason
AU  - Hagen, Mark
AU  - Sisto, Alessandro
TI  - Hierarchically hyperbolic spaces, I: Curve complexes for cubical groups
JO  - Geometry & topology
PY  - 2017
SP  - 1731
EP  - 1804
VL  - 21
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.1731/
DO  - 10.2140/gt.2017.21.1731
ID  - GT_2017_21_3_a5
ER  - 
%0 Journal Article
%A Behrstock, Jason
%A Hagen, Mark
%A Sisto, Alessandro
%T Hierarchically hyperbolic spaces, I: Curve complexes for cubical groups
%J Geometry & topology
%D 2017
%P 1731-1804
%V 21
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.1731/
%R 10.2140/gt.2017.21.1731
%F GT_2017_21_3_a5
Behrstock, Jason; Hagen, Mark; Sisto, Alessandro. Hierarchically hyperbolic spaces, I: Curve complexes for cubical groups. Geometry & topology, Tome 21 (2017) no. 3, pp. 1731-1804. doi : 10.2140/gt.2017.21.1731. http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.1731/

[1] I Agol, The virtual Haken conjecture, Doc. Math. 18 (2013) 1045

[2] H J Bandelt, V Chepoi, Metric graph theory and geometry: a survey, from: "Surveys on discrete and computational geometry" (editors J E Goodman, J Pach, R Pollack), Contemp. Math. 453, Amer. Math. Soc. (2008) 49 | DOI

[3] J A Behrstock, Asymptotic geometry of the mapping class group and Teichmüller space, Geom. Topol. 10 (2006) 1523 | DOI

[4] J Behrstock, R Charney, Divergence and quasimorphisms of right-angled Artin groups, Math. Ann. 352 (2012) 339 | DOI

[5] J Behrstock, M F Hagen, Cubulated groups: thickness, relative hyperbolicity, and simplicial boundaries, Groups Geom. Dyn. 10 (2016) 649 | DOI

[6] J Behrstock, M F Hagen, A Sisto, Hierarchically hyperbolic spaces II: Combination theorems and the distance formula, preprint (2015)

[7] J Behrstock, B Kleiner, Y Minsky, L Mosher, Geometry and rigidity of mapping class groups, Geom. Topol. 16 (2012) 781 | DOI

[8] J A Behrstock, Y N Minsky, Dimension and rank for mapping class groups, Ann. of Math. 167 (2008) 1055 | DOI

[9] N Bergeron, D T Wise, A boundary criterion for cubulation, Amer. J. Math. 134 (2012) 843 | DOI

[10] M Bestvina, K Bromberg, K Fujiwara, Bounded cohomology with coefficients in uniformly convex Banach spaces, preprint (2013)

[11] M Bestvina, K Bromberg, K Fujiwara, Constructing group actions on quasi-trees and applications to mapping class groups, Publ. Math. Inst. Hautes Études Sci. 122 (2015) 1 | DOI

[12] M Bestvina, M Feighn, Subfactor projections, J. Topol. 7 (2014) 771 | DOI

[13] M Bestvina, K Fujiwara, Bounded cohomology of subgroups of mapping class groups, Geom. Topol. 6 (2002) 69 | DOI

[14] M Bestvina, B Kleiner, M Sageev, Quasiflats in CAT(0) 2–complexes, Algebr. Geom. Topol. 16 (2016) 2663 | DOI

[15] B H Bowditch, Tight geodesics in the curve complex, Invent. Math. 171 (2008) 281 | DOI

[16] J F Brock, The Weil–Petersson metric and volumes of 3–dimensional hyperbolic convex cores, J. Amer. Math. Soc. 16 (2003) 495 | DOI

[17] J F Brock, R D Canary, Y N Minsky, The classification of Kleinian surface groups, II : The ending lamination conjecture, Ann. of Math. 176 (2012) 1 | DOI

[18] M Burger, N Monod, Continuous bounded cohomology and applications to rigidity theory, Geom. Funct. Anal. 12 (2002) 219 | DOI

[19] M Burger, S Mozes, Lattices in product of trees, Inst. Hautes Études Sci. Publ. Math. 92 (2000) 151

[20] P E Caprace, N Monod, Isometry groups of non-positively curved spaces: structure theory, J. Topol. 2 (2009) 661 | DOI

[21] P E Caprace, M Sageev, Rank rigidity for CAT(0) cube complexes, Geom. Funct. Anal. 21 (2011) 851 | DOI

[22] R Charney, An introduction to right-angled Artin groups, Geom. Dedicata 125 (2007) 141 | DOI

[23] R Charney, M W Davis, Finite K(π,1)s for Artin groups, from: "Prospects in topology" (editor F Quinn), Ann. of Math. Stud. 138, Princeton Univ. Press (1995) 110

[24] I Chatterji, G Niblo, From wall spaces to CAT(0) cube complexes, Internat. J. Algebra Comput. 15 (2005) 875 | DOI

[25] V Chepoi, Graphs of some CAT(0) complexes, Adv. in Appl. Math. 24 (2000) 125 | DOI

[26] V Chepoi, M F Hagen, On embeddings of CAT(0) cube complexes into products of trees via colouring their hyperplanes, J. Combin. Theory Ser. B 103 (2013) 428 | DOI

[27] M W Davis, The geometry and topology of Coxeter groups, 32, Princeton Univ. Press (2008)

[28] C Druţu, Quasi-isometry invariants and asymptotic cones, Internat. J. Algebra Comput. 12 (2002) 99 | DOI

[29] M G Durham, The augmented marking complex of a surface, J. Lond. Math. Soc. 94 (2016) 933 | DOI

[30] A Eskin, H Masur, K Rafi, Large scale rank of Teichmüller space, preprint (2013)

[31] K Fujiwara, Subgroups generated by two pseudo-Anosov elements in a mapping class group, I : Uniform exponential growth, from: "Groups of diffeomorphisms" (editors R Penner, D Kotschick, T Tsuboi, N Kawazumi, T Kitano, Y Mitsumatsu), Adv. Stud. Pure Math. 52, Math. Soc. Japan (2008) 283

[32] M F Hagen, The simplicial boundary of a CAT(0) cube complex, Algebr. Geom. Topol. 13 (2013) 1299 | DOI

[33] M F Hagen, Weak hyperbolicity of cube complexes and quasi-arboreal groups, J. Topol. 7 (2014) 385 | DOI

[34] M F Hagen, P Przytycki, Cocompactly cubulated graph manifolds, Israel J. Math. 207 (2015) 377 | DOI

[35] M F Hagen, D T Wise, Cubulating hyperbolic free-by-cyclic groups: the general case, Geom. Funct. Anal. 25 (2015) 134 | DOI

[36] F Haglund, Finite index subgroups of graph products, Geom. Dedicata 135 (2008) 167 | DOI

[37] F Haglund, D T Wise, Special cube complexes, Geom. Funct. Anal. 17 (2008) 1551 | DOI

[38] U Hamenstädt, Geometry of the mapping class groups, III: Quasi-isometric rigidity, preprint (2005)

[39] J Huang, Top dimensional quasiflats in CAT(0) cube complexes, preprint (2014)

[40] D Hume, Embedding mapping class groups into finite products of trees, preprint (2012)

[41] N V Ivanov, Automorphism of complexes of curves and of Teichmüller spaces, Internat. Math. Res. Notices (1997) 651 | DOI

[42] J Kahn, V Markovic, Immersing almost geodesic surfaces in a closed hyperbolic three manifold, Ann. of Math. 175 (2012) 1127 | DOI

[43] S H Kim, T Koberda, Embedability between right-angled Artin groups, Geom. Topol. 17 (2013) 493 | DOI

[44] S H Kim, T Koberda, The geometry of the curve graph of a right-angled Artin group, Internat. J. Algebra Comput. 24 (2014) 121 | DOI

[45] B Kleiner, The local structure of length spaces with curvature bounded above, Math. Z. 231 (1999) 409 | DOI

[46] J Maher, G Tiozzo, Random walks on weakly hyperbolic groups, preprint (2014)

[47] A I Mal’Cev, On a class of homogeneous spaces, Izvestiya Akad. Nauk. SSSR. Ser. Mat. 13 (1949) 9

[48] J F Manning, Geometry of pseudocharacters, Geom. Topol. 9 (2005) 1147 | DOI

[49] H A Masur, Y N Minsky, Geometry of the complex of curves, I : Hyperbolicity, Invent. Math. 138 (1999) 103 | DOI

[50] H A Masur, Y N Minsky, Geometry of the complex of curves, II : Hierarchical structure, Geom. Funct. Anal. 10 (2000) 902 | DOI

[51] P Mathieu, A Sisto, Deviation inequalities and CLT for random walks on acylindrically hyperbolic groups, preprint (2014)

[52] N Monod, Continuous bounded cohomology of locally compact groups, 1758, Springer (2001) | DOI

[53] A Nevo, M Sageev, The Poisson boundary of CAT(0) cube complex groups, Groups Geom. Dyn. 7 (2013) 653 | DOI

[54] G A Niblo, L D Reeves, Coxeter groups act on CAT(0) cube complexes, J. Group Theory 6 (2003) 399 | DOI

[55] D Osin, Acylindrically hyperbolic groups, Trans. Amer. Math. Soc. 368 (2016) 851 | DOI

[56] P Pansu, Croissance des boules et des géodésiques fermées dans les nilvariétés, Ergodic Theory Dynam. Systems 3 (1983) 415 | DOI

[57] P Pansu, Métriques de Carnot–Carathéodory et quasiisométries des espaces symétriques de rang un, Ann. of Math. 129 (1989) 1 | DOI

[58] S D Pauls, The large scale geometry of nilpotent Lie groups, Comm. Anal. Geom. 9 (2001) 951 | DOI

[59] K Rafi, A combinatorial model for the Teichmüller metric, Geom. Funct. Anal. 17 (2007) 936 | DOI

[60] K Ruane, S Witzel, CAT(0) cubical complexes for graph products of finitely generated abelian groups, New York J. Math. 22 (2016) 637

[61] L Sabalka, D Savchuk, Submanifold projection, preprint (2012)

[62] M Sageev, Ends of group pairs and non-positively curved cube complexes, Proc. London Math. Soc. 71 (1995) 585 | DOI

[63] M Sageev, D T Wise, The Tits alternative for CAT(0) cubical complexes, Bull. London Math. Soc. 37 (2005) 706 | DOI

[64] P Scott, Subgroups of surface groups are almost geometric, J. London Math. Soc. 17 (1978) 555 | DOI

[65] A Sisto, Projections and relative hyperbolicity, Enseign. Math. 59 (2013) 165 | DOI

[66] S J Taylor, Right-angled Artin groups and Out(Fn), I : Quasi-isometric embeddings, Groups Geom. Dyn. 9 (2015) 275 | DOI

[67] W P Thurston, On the geometry and dynamics of diffeomorphisms of surfaces, Bull. Amer. Math. Soc. 19 (1988) 417 | DOI

[68] J H C Whitehead, Combinatorial homotopy, I, Bull. Amer. Math. Soc. 55 (1949) 213 | DOI

[69] J H C Whitehead, Combinatorial homotopy, II, Bull. Amer. Math. Soc. 55 (1949) 453 | DOI

[70] D T Wise, Cubulating small cancellation groups, Geom. Funct. Anal. 14 (2004) 150 | DOI

[71] D T Wise, Complete square complexes, Comment. Math. Helv. 82 (2007) 683 | DOI

[72] D T Wise, The structure of groups with a quasiconvex hierarchy, preprint (2011)

[73] D T Wise, From riches to raags : 3–manifolds, right-angled Artin groups, and cubical geometry, 117, Amer. Math. Soc. (2012) | DOI

Cité par Sources :