The higher Morita category of đ”Œn–algebras
Geometry & topology, Tome 21 (2017) no. 3, pp. 1631-1730.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We introduce simple models for associative algebras and bimodules in the context of nonsymmetric ∞–operads, and use these to construct an (∞,2)–category of associative algebras, bimodules and bimodule homomorphisms in a monoidal ∞–category. By working with ∞–operads over Δn,op we iterate these definitions and generalize our construction to get an (∞,n+1)–category of En–algebras and iterated bimodules in an En–monoidal ∞–category. Moreover, we show that if C is an En+k–monoidal ∞–category then the (∞,n+1)–category of En–algebras in C has a natural Ek–monoidal structure. We also identify the mapping (∞,n)–categories between two En–algebras, which allows us to define interesting nonconnective deloopings of the Brauer space of a commutative ring spectrum.

DOI : 10.2140/gt.2017.21.1631
Classification : 18D50, 55U35, 16D20
Keywords: iterated bimodules, \mathbbE_n–algebras, higher Morita category

Haugseng, Rune 1

1 Department of Mathematical Sciences, University of Copenhagen, Universitetsparken 5, DK-2100 KÞbenhavn Ø, Denmark
@article{GT_2017_21_3_a4,
     author = {Haugseng, Rune},
     title = {The higher {Morita} category of {\ensuremath{\mathbb{E}}n{\textendash}algebras}},
     journal = {Geometry & topology},
     pages = {1631--1730},
     publisher = {mathdoc},
     volume = {21},
     number = {3},
     year = {2017},
     doi = {10.2140/gt.2017.21.1631},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.1631/}
}
TY  - JOUR
AU  - Haugseng, Rune
TI  - The higher Morita category of đ”Œn–algebras
JO  - Geometry & topology
PY  - 2017
SP  - 1631
EP  - 1730
VL  - 21
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.1631/
DO  - 10.2140/gt.2017.21.1631
ID  - GT_2017_21_3_a4
ER  - 
%0 Journal Article
%A Haugseng, Rune
%T The higher Morita category of đ”Œn–algebras
%J Geometry & topology
%D 2017
%P 1631-1730
%V 21
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.1631/
%R 10.2140/gt.2017.21.1631
%F GT_2017_21_3_a4
Haugseng, Rune. The higher Morita category of đ”Œn–algebras. Geometry & topology, Tome 21 (2017) no. 3, pp. 1631-1730. doi : 10.2140/gt.2017.21.1631. http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.1631/

[1] R Andrade, From manifolds to invariants of En-algebras, PhD thesis, Massachusetts Institute of Technology (2010)

[2] B Antieau, D Gepner, Brauer groups and étale cohomology in derived algebraic geometry, Geom. Topol. 18 (2014) 1149 | DOI

[3] M Atiyah, Topological quantum field theories, Inst. Hautes Études Sci. Publ. Math. 68 (1988) 175

[4] D Ayala, J Francis, N Rozenblyum, Factorization homology from higher categories, preprint (2015)

[5] D Ayala, J Francis, H L Tanaka, Factorization homology of stratified spaces, Selecta Math. 23 (2017) 293 | DOI

[6] D Ayala, R Hepworth, Configuration spaces and Θn, Proc. Amer. Math. Soc. 142 (2014) 2243 | DOI

[7] J C Baez, J Dolan, Higher-dimensional algebra and topological quantum field theory, J. Math. Phys. 36 (1995) 6073 | DOI

[8] A Baker, B Richter, M Szymik, Brauer groups for commutative S–algebras, J. Pure Appl. Algebra 216 (2012) 2361 | DOI

[9] C Barwick, (∞,n)–Cat as a closed model category, PhD thesis, University of Pennsylvania (2005)

[10] C Barwick, From operator categories to topological operads, preprint (2013)

[11] D Calaque, C Scheimbauer, A note on the (∞,n)–category of cobordisms, preprint (2015)

[12] G S H Cruttwell, M A Shulman, A unified framework for generalized multicategories, Theory Appl. Categ. 24 (2010) 580

[13] J Francis, The tangent complex and Hochschild cohomology of En–rings, Compos. Math. 149 (2013) 430 | DOI

[14] D S Freed, Higher algebraic structures and quantization, Comm. Math. Phys. 159 (1994) 343

[15] R Garner, N Gurski, The low-dimensional structures formed by tricategories, Math. Proc. Cambridge Philos. Soc. 146 (2009) 551 | DOI

[16] D Gepner, R Haugseng, Enriched ∞–categories via non-symmetric ∞–operads, Adv. Math. 279 (2015) 575 | DOI

[17] G Ginot, Notes on factorization algebras, factorization homology and applications, from: "Mathematical aspects of quantum field theories" (editors D Calaque, T Strobl), Springer (2015) 429 | DOI

[18] A Grothendieck, RevĂȘtements Ă©tales et groupe fondamental (SGA 1), 224, Springer (1971)

[19] R Haugseng, Iterated spans and “classical” topological field theories, preprint (2014)

[20] M J Hopkins, M Mahowald, H Sadofsky, Constructions of elements in Picard groups, from: "Topology and representation theory" (editors E M Friedlander, M E Mahowald), Contemp. Math. 158, Amer. Math. Soc. (1994) 89 | DOI

[21] T Johnson-Freyd, C Scheimbauer, (Op)lax natural transformations, twisted quantum field theories, and “even higher” Morita categories, Adv. Math. 307 (2017) 147 | DOI

[22] N Johnson, Morita theory for derived categories: a bicategorical perspective, preprint (2008)

[23] A Joyal, Notes on quasicategories, unpublished (2008)

[24] A Joyal, M Tierney, Quasi-categories vs Segal spaces, from: "Categories in algebra, geometry and mathematical physics" (editors A Davydov, M Batanin, M Johnson, S Lack, A Neeman), Contemp. Math. 431, Amer. Math. Soc. (2007) 277 | DOI

[25] A Kapustin, Topological field theory, higher categories, and their applications, from: "Proceedings of the International Congress of Mathematicians" (editors R Bhatia, A Pal, G Rangarajan, V Srinivas, M Vanninathan), Hindustan Book Agency (2010) 2021

[26] R J Lawrence, Triangulations, categories and extended topological field theories, from: "Quantum topology" (editors L H Kauffman, R A Baadhio), Ser. Knots Everything 3, World Sci. Publ. (1993) 191 | DOI

[27] T Leinster, Higher operads, higher categories, 298, Cambridge University Press (2004) | DOI

[28] J Lurie, Higher topos theory, 170, Princeton University Press (2009) | DOI

[29] J Lurie, (∞,2)–categories and the Goodwillie calculus, I, preprint (2009)

[30] J Lurie, On the classification of topological field theories, from: "Current developments in mathematics, 2008" (editors D Jerison, B Mazur, T Mrowka, W Schmid, R Stanley, S T Yau), International Press (2009) 129

[31] J Lurie, Higher algebra, unpublished manuscript (2014)

[32] A Mathew, V Stojanoska, The Picard group of topological modular forms via descent theory, Geom. Topol. 20 (2016) 3133 | DOI

[33] J P May, Picard groups, Grothendieck rings, and Burnside rings of categories, Adv. Math. 163 (2001) 1 | DOI

[34] S Morrison, K Walker, Blob homology, Geom. Topol. 16 (2012) 1481 | DOI

[35] C Rezk, A model for the homotopy theory of homotopy theory, Trans. Amer. Math. Soc. 353 (2001) 973 | DOI

[36] C Scheimbauer, Factorization homology as a fully extended topological field theory, PhD thesis, ETH Zurich (2014)

[37] C J Schommer-Pries, The classification of two-dimensional extended topological field theories, preprint (2011)

[38] G Segal, Categories and cohomology theories, Topology 13 (1974) 293 | DOI

[39] M A Shulman, Constructing symmetric monoidal bicategories, preprint (2010)

[40] M Szymik, Brauer spaces for commutative rings and structured ring spectra, preprint (2011)

[41] B Toën, Derived Azumaya algebras and generators for twisted derived categories, Invent. Math. 189 (2012) 581 | DOI

Cité par Sources :