Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We introduce simple models for associative algebras and bimodules in the context of nonsymmetric âoperads, and use these to construct an âcategory of associative algebras, bimodules and bimodule homomorphisms in a monoidal âcategory. By working with âoperads over we iterate these definitions and generalize our construction to get an âcategory of âalgebras and iterated bimodules in an âmonoidal âcategory. Moreover, we show that if is an âmonoidal âcategory then the âcategory of âalgebras in has a natural âmonoidal structure. We also identify the mapping âcategories between two âalgebras, which allows us to define interesting nonconnective deloopings of the Brauer space of a commutative ring spectrum.
Haugseng, Rune 1
@article{GT_2017_21_3_a4, author = {Haugseng, Rune}, title = {The higher {Morita} category of {\ensuremath{\mathbb{E}}n{\textendash}algebras}}, journal = {Geometry & topology}, pages = {1631--1730}, publisher = {mathdoc}, volume = {21}, number = {3}, year = {2017}, doi = {10.2140/gt.2017.21.1631}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.1631/} }
Haugseng, Rune. The higher Morita category of đŒnâalgebras. Geometry & topology, Tome 21 (2017) no. 3, pp. 1631-1730. doi : 10.2140/gt.2017.21.1631. http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.1631/
[1] From manifolds to invariants of En-algebras, PhD thesis, Massachusetts Institute of Technology (2010)
,[2] Brauer groups and étale cohomology in derived algebraic geometry, Geom. Topol. 18 (2014) 1149 | DOI
, ,[3] Topological quantum field theories, Inst. Hautes Ătudes Sci. Publ. Math. 68 (1988) 175
,[4] Factorization homology from higher categories, preprint (2015)
, , ,[5] Factorization homology of stratified spaces, Selecta Math. 23 (2017) 293 | DOI
, , ,[6] Configuration spaces and În, Proc. Amer. Math. Soc. 142 (2014) 2243 | DOI
, ,[7] Higher-dimensional algebra and topological quantum field theory, J. Math. Phys. 36 (1995) 6073 | DOI
, ,[8] Brauer groups for commutative Sâalgebras, J. Pure Appl. Algebra 216 (2012) 2361 | DOI
, , ,[9] (â,n)âCat as a closed model category, PhD thesis, University of Pennsylvania (2005)
,[10] From operator categories to topological operads, preprint (2013)
,[11] A note on the (â,n)âcategory of cobordisms, preprint (2015)
, ,[12] A unified framework for generalized multicategories, Theory Appl. Categ. 24 (2010) 580
, ,[13] The tangent complex and Hochschild cohomology of Enârings, Compos. Math. 149 (2013) 430 | DOI
,[14] Higher algebraic structures and quantization, Comm. Math. Phys. 159 (1994) 343
,[15] The low-dimensional structures formed by tricategories, Math. Proc. Cambridge Philos. Soc. 146 (2009) 551 | DOI
, ,[16] Enriched ââcategories via non-symmetric ââoperads, Adv. Math. 279 (2015) 575 | DOI
, ,[17] Notes on factorization algebras, factorization homology and applications, from: "Mathematical aspects of quantum field theories" (editors D Calaque, T Strobl), Springer (2015) 429 | DOI
,[18] RevĂȘtements Ă©tales et groupe fondamental (SGA 1), 224, Springer (1971)
,[19] Iterated spans and âclassicalâ topological field theories, preprint (2014)
,[20] Constructions of elements in Picard groups, from: "Topology and representation theory" (editors E M Friedlander, M E Mahowald), Contemp. Math. 158, Amer. Math. Soc. (1994) 89 | DOI
, , ,[21] (Op)lax natural transformations, twisted quantum field theories, and âeven higherâ Morita categories, Adv. Math. 307 (2017) 147 | DOI
, ,[22] Morita theory for derived categories: a bicategorical perspective, preprint (2008)
,[23] Notes on quasicategories, unpublished (2008)
,[24] Quasi-categories vs Segal spaces, from: "Categories in algebra, geometry and mathematical physics" (editors A Davydov, M Batanin, M Johnson, S Lack, A Neeman), Contemp. Math. 431, Amer. Math. Soc. (2007) 277 | DOI
, ,[25] Topological field theory, higher categories, and their applications, from: "Proceedings of the International Congress of Mathematicians" (editors R Bhatia, A Pal, G Rangarajan, V Srinivas, M Vanninathan), Hindustan Book Agency (2010) 2021
,[26] Triangulations, categories and extended topological field theories, from: "Quantum topology" (editors L H Kauffman, R A Baadhio), Ser. Knots Everything 3, World Sci. Publ. (1993) 191 | DOI
,[27] Higher operads, higher categories, 298, Cambridge University Press (2004) | DOI
,[28] Higher topos theory, 170, Princeton University Press (2009) | DOI
,[29] (â,2)âcategories and the Goodwillie calculus, I, preprint (2009)
,[30] On the classification of topological field theories, from: "Current developments in mathematics, 2008" (editors D Jerison, B Mazur, T Mrowka, W Schmid, R Stanley, S T Yau), International Press (2009) 129
,[31] Higher algebra, unpublished manuscript (2014)
,[32] The Picard group of topological modular forms via descent theory, Geom. Topol. 20 (2016) 3133 | DOI
, ,[33] Picard groups, Grothendieck rings, and Burnside rings of categories, Adv. Math. 163 (2001) 1 | DOI
,[34] Blob homology, Geom. Topol. 16 (2012) 1481 | DOI
, ,[35] A model for the homotopy theory of homotopy theory, Trans. Amer. Math. Soc. 353 (2001) 973 | DOI
,[36] Factorization homology as a fully extended topological field theory, PhD thesis, ETH Zurich (2014)
,[37] The classification of two-dimensional extended topological field theories, preprint (2011)
,[38] Categories and cohomology theories, Topology 13 (1974) 293 | DOI
,[39] Constructing symmetric monoidal bicategories, preprint (2010)
,[40] Brauer spaces for commutative rings and structured ring spectra, preprint (2011)
,[41] Derived Azumaya algebras and generators for twisted derived categories, Invent. Math. 189 (2012) 581 | DOI
,Cité par Sources :