Homological stability for spaces of embedded surfaces
Geometry & topology, Tome 21 (2017) no. 3, pp. 1387-1467.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We study the space of oriented genus-g subsurfaces of a fixed manifold M and, in particular, its homological properties. We construct a “scanning map” which compares this space to the space of sections of a certain fibre bundle over M associated to its tangent bundle, and show that this map induces an isomorphism on homology in a range of degrees.

Our results are analogous to McDuff’s theorem on configuration spaces, extended from 0–dimensional submanifolds to 2–dimensional submanifolds.

DOI : 10.2140/gt.2017.21.1387
Classification : 55R40, 57R20, 57R40, 57R50, 57S05
Keywords: submanifolds, characteristic classes, homology stability, embedding spaces, mapping class groups, scanning

Cantero, Federico 1 ; Randal-Williams, Oscar 2

1 Institut de Recherche en Mathématique et Physique, Université Catholique de Louvain, Chemin du Cyclotron, 2, 1348 Louvain-la-Neuve, Belgium
2 Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WB, United Kingdom
@article{GT_2017_21_3_a1,
     author = {Cantero, Federico and Randal-Williams, Oscar},
     title = {Homological stability for spaces of embedded surfaces},
     journal = {Geometry & topology},
     pages = {1387--1467},
     publisher = {mathdoc},
     volume = {21},
     number = {3},
     year = {2017},
     doi = {10.2140/gt.2017.21.1387},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.1387/}
}
TY  - JOUR
AU  - Cantero, Federico
AU  - Randal-Williams, Oscar
TI  - Homological stability for spaces of embedded surfaces
JO  - Geometry & topology
PY  - 2017
SP  - 1387
EP  - 1467
VL  - 21
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.1387/
DO  - 10.2140/gt.2017.21.1387
ID  - GT_2017_21_3_a1
ER  - 
%0 Journal Article
%A Cantero, Federico
%A Randal-Williams, Oscar
%T Homological stability for spaces of embedded surfaces
%J Geometry & topology
%D 2017
%P 1387-1467
%V 21
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.1387/
%R 10.2140/gt.2017.21.1387
%F GT_2017_21_3_a1
Cantero, Federico; Randal-Williams, Oscar. Homological stability for spaces of embedded surfaces. Geometry & topology, Tome 21 (2017) no. 3, pp. 1387-1467. doi : 10.2140/gt.2017.21.1387. http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.1387/

[1] G Arone, P Lambrechts, I Volić, Calculus of functors, operad formality, and rational homology of embedding spaces, Acta Math. 199 (2007) 153 | DOI

[2] E Binz, H R Fischer, The manifold of embeddings of a closed manifold, from: "Differential geometric methods in mathematical physics" (editor H D Doebner), Lecture Notes in Phys. 139, Springer (1981) 310 | DOI

[3] S K Boldsen, Improved homological stability for the mapping class group with integral or twisted coefficients, Math. Z. 270 (2012) 297 | DOI

[4] J Cerf, Topologie de certains espaces de plongements, Bull. Soc. Math. France 89 (1961) 227

[5] S Galatius, Stable homology of automorphism groups of free groups, Ann. of Math. 173 (2011) 705 | DOI

[6] S Galatius, O Randal-Williams, Monoids of moduli spaces of manifolds, Geom. Topol. 14 (2010) 1243 | DOI

[7] S Galatius, O Randal-Williams, Stable moduli spaces of high-dimensional manifolds, Acta Math. 212 (2014) 257 | DOI

[8] S Galatius, U Tillmann, I Madsen, M Weiss, The homotopy type of the cobordism category, Acta Math. 202 (2009) 195 | DOI

[9] V Godin, Higher string topology operations, preprint (2008)

[10] A Haefliger, Plongements différentiables de variétés dans variétés, Comment. Math. Helv. 36 (1961) 47 | DOI

[11] J L Harer, Stability of the homology of the mapping class groups of orientable surfaces, Ann. of Math. 121 (1985) 215 | DOI

[12] N V Ivanov, On the homology stability for Teichmüller modular groups : closed surfaces and twisted coefficients, from: "Mapping class groups and moduli spaces of Riemann surfaces" (editors C F Bödigheimer, R M Hain), Contemp. Math. 150, Amer. Math. Soc. (1993) 149 | DOI

[13] A Kupers, Homological stability for unlinked Euclidean circles in R3, preprint (2013)

[14] G Laures, On cobordism of manifolds with corners, Trans. Amer. Math. Soc. 352 (2000) 5667 | DOI

[15] E L Lima, On the local triviality of the restriction map for embeddings, Comment. Math. Helv. 38 (1964) 163 | DOI

[16] I Madsen, M Weiss, The stable moduli space of Riemann surfaces : Mumford’s conjecture, Ann. of Math. 165 (2007) 843 | DOI

[17] D Mcduff, Configuration spaces of positive and negative particles, Topology 14 (1975) 91 | DOI

[18] D Mcduff, G Segal, Homology fibrations and the “group-completion” theorem, Invent. Math. 31 (1975/76) 279 | DOI

[19] P W Michor, Manifolds of differentiable mappings, 3, Shiva (1980)

[20] R S Palais, Local triviality of the restriction map for embeddings, Comment. Math. Helv. 34 (1960) 305 | DOI

[21] M Palmer, Configuration spaces and homological stability, PhD thesis, University of Oxford (2012)

[22] M Palmer, Homological stability for oriented configuration spaces, Trans. Amer. Math. Soc. 365 (2013) 3675 | DOI

[23] O Randal-Williams, Resolutions of moduli spaces and homological stability, v3, preprint (2010)

[24] O Randal-Williams, Embedded cobordism categories and spaces of submanifolds, Int. Math. Res. Not. 2011 (2011) 572 | DOI

[25] O Randal-Williams, Resolutions of moduli spaces and homological stability, J. Eur. Math. Soc. 18 (2016) 1 | DOI

[26] G Segal, Categories and cohomology theories, Topology 13 (1974) 293 | DOI

[27] H Toda, Composition methods in homotopy groups of spheres, 49, Princeton University Press (1962)

[28] N Wahl, Homological stability for mapping class groups of surfaces, from: "Handbook of moduli, III" (editors G Farkas, I Morrison), Adv. Lect. Math. 26, International Press (2013) 547

Cité par Sources :