On the topological contents of η–invariants
Geometry & topology, Tome 21 (2017) no. 3, pp. 1285-1385.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We discuss a universal bordism invariant obtained from the Atiyah–Patodi–Singer η–invariant from the analytic and homotopy-theoretic point of view. Classical invariants like the Adams e–invariant, ρ–invariants and String–bordism invariants are derived as special cases. The main results are a secondary index theorem about the coincidence of the analytic and topological constructions and intrinsic expressions for the bordism invariants.

DOI : 10.2140/gt.2017.21.1285
Classification : 58J28
Keywords: eta invariant, $K$–theory, bordism

Bunke, Ulrich 1

1 Fakultät für Mathematik, Universität Regensburg, D-93040 Regensburg, Germany
@article{GT_2017_21_3_a0,
     author = {Bunke, Ulrich},
     title = {On the topological contents of \ensuremath{\eta}{\textendash}invariants},
     journal = {Geometry & topology},
     pages = {1285--1385},
     publisher = {mathdoc},
     volume = {21},
     number = {3},
     year = {2017},
     doi = {10.2140/gt.2017.21.1285},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.1285/}
}
TY  - JOUR
AU  - Bunke, Ulrich
TI  - On the topological contents of η–invariants
JO  - Geometry & topology
PY  - 2017
SP  - 1285
EP  - 1385
VL  - 21
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.1285/
DO  - 10.2140/gt.2017.21.1285
ID  - GT_2017_21_3_a0
ER  - 
%0 Journal Article
%A Bunke, Ulrich
%T On the topological contents of η–invariants
%J Geometry & topology
%D 2017
%P 1285-1385
%V 21
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.1285/
%R 10.2140/gt.2017.21.1285
%F GT_2017_21_3_a0
Bunke, Ulrich. On the topological contents of η–invariants. Geometry & topology, Tome 21 (2017) no. 3, pp. 1285-1385. doi : 10.2140/gt.2017.21.1285. http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.1285/

[1] J F Adams, On the groups J(X), IV, Topology 5 (1966) 21 | DOI

[2] J F Adams, Stable homotopy and generalised homology, Univ. Chicago Press (1974)

[3] J F Adams, Infinite loop spaces, 90, Princeton Univ. Press (1978)

[4] J F Adams, A S Harris, R M Switzer, Hopf algebras of cooperations for real and complex K–theory, Proc. London Math. Soc. 23 (1971) 385 | DOI

[5] D W Anderson, L Hodgkin, The K–theory of Eilenberg–MacLane complexes, Topology 7 (1968) 317 | DOI

[6] M Ando, M Hopkins, C Rezk, Multiplicative orientations of KO–theory and of the spectrum of topological modular forms, preprint (2010)

[7] M F Atiyah, V K Patodi, I M Singer, Spectral asymmetry and Riemannian geometry, I, Math. Proc. Cambridge Philos. Soc. 77 (1975) 43 | DOI

[8] M F Atiyah, V K Patodi, I M Singer, Spectral asymmetry and Riemannian geometry, II, Math. Proc. Cambridge Philos. Soc. 78 (1975) 405 | DOI

[9] M F Atiyah, V K Patodi, I M Singer, Spectral asymmetry and Riemannian geometry, III, Math. Proc. Cambridge Philos. Soc. 79 (1976) 71 | DOI

[10] M F Atiyah, G B Segal, Equivariant K–theory and completion, J. Differential Geometry 3 (1969) 1

[11] M F Atiyah, I M Singer, The index of elliptic operators, I, Ann. of Math. 87 (1968) 484 | DOI

[12] A Bahri, P Gilkey, The eta invariant, Pinc bordism, and equivariant Spinc bordism for cyclic 2–groups, Pacific J. Math. 128 (1987) 1

[13] A Bahri, P Gilkey, Pinc cobordism and equivariant Spinc cobordism of cyclic 2–groups, Proc. Amer. Math. Soc. 99 (1987) 380 | DOI

[14] T Bauer, Computation of the homotopy of the spectrum tmf, from: "Groups, homotopy and configuration spaces" (editors N Iwase, T Kohno, R Levi, D Tamaki, J Wu), Geom. Topol. Monogr. 13, Geom. Topol. Publ. (2008) 11 | DOI

[15] P Baum, R G Douglas, K homology and index theory, from: "Operator algebras and applications, I" (editor R V Kadison), Proc. Sympos. Pure Math. 38, Amer. Math. Soc. (1982) 117

[16] M Behrens, G Laures, β–family congruences and the f–invariant, from: "New topological contexts for Galois theory and algebraic geometry" (editors A Baker, B Richter), Geom. Topol. Monogr. 16, Geom. Topol. Publ. (2009) 9 | DOI

[17] N Berline, E Getzler, M Vergne, Heat kernels and Dirac operators, 298, Springer (1992) | DOI

[18] B Blackadar, K–theory for operator algebras, 5, Cambridge Univ. Press (1998) | DOI

[19] J M Boardman, Stable operations in generalized cohomology, from: "Handbook of algebraic topology" (editor I M James), North-Holland (1995) 585 | DOI

[20] A K Bousfield, The localization of spectra with respect to homology, Topology 18 (1979) 257 | DOI

[21] J L Brylinski, Loop spaces, characteristic classes and geometric quantization, 107, Birkhäuser (1993) | DOI

[22] U Bunke, A K–theoretic relative index theorem and Callias-type Dirac operators, Math. Ann. 303 (1995) 241 | DOI

[23] U Bunke, Index theory, eta forms, and Deligne cohomology, 928, Amer. Math. Soc. (2009) | DOI

[24] U Bunke, N Naumann, Secondary invariants for string bordism and topological modular forms, Bull. Sci. Math. 138 (2014) 912 | DOI

[25] U Bunke, T Schick, Smooth K–theory, from: "From probability to geometry, II" (editors X Dai, R Léandre, X Ma, W Zhang), Astérisque 328, Soc. Math. France (2009) 45

[26] U Bunke, T Schick, Uniqueness of smooth extensions of generalized cohomology theories, J. Topol. 3 (2010) 110 | DOI

[27] D Crowley, S Goette, Kreck–Stolz invariants for quaternionic line bundles, Trans. Amer. Math. Soc. 365 (2013) 3193 | DOI

[28] P Deligne, Cohomologie étale (SGA 4), 569, Springer (1977)

[29] C Deninger, W Singhof, The e–invariant and the spectrum of the Laplacian for compact nilmanifolds covered by Heisenberg groups, Invent. Math. 78 (1984) 101 | DOI

[30] H Donnelly, Spectral geometry and invariants from differential topology, Bull. London Math. Soc. 7 (1975) 147 | DOI

[31] A Z Dymov, Homology spheres and contractible compact manifolds, Izv. Akad. Nauk SSSR Ser. Mat. 35 (1971) 72

[32] D S Freed, M Hopkins, On Ramond–Ramond fields and K–theory, J. High Energy Phys. (2000) | DOI

[33] D S Freed, R B Melrose, A mod k index theorem, Invent. Math. 107 (1992) 283 | DOI

[34] B I Gray, Spaces of the same n–type, for all n, Topology 5 (1966) 241 | DOI

[35] F Hirzebruch, T Berger, R Jung, Manifolds and modular forms, E20, Friedr. Vieweg Sohn (1992) | DOI

[36] N Hitchin, Lectures on special Lagrangian submanifolds, from: "Winter school on mirror symmetry, vector bundles and Lagrangian submanifolds" (editors C Vafa, S T Yau), AMS/IP Stud. Adv. Math. 23, Amer. Math. Soc. (2001) 151

[37] M J Hopkins, Algebraic topology and modular forms, from: "Proceedings of the International Congress of Mathematicians, I : Plenary lectures and ceremonies" (editor T Li), Higher Ed. Press (2002) 291

[38] M J Hopkins, I M Singer, Quadratic functions in geometry, topology, and M-theory, J. Differential Geom. 70 (2005) 329

[39] M A Hovey, vn–elements in ring spectra and applications to bordism theory, Duke Math. J. 88 (1997) 327 | DOI

[40] M Hovey, The homotopy of MString and MU⟨6⟩ at large primes, Algebr. Geom. Topol. 8 (2008) 2401 | DOI

[41] M A Hovey, D C Ravenel, The 7–connected cobordism ring at p = 3, Trans. Amer. Math. Soc. 347 (1995) 3473 | DOI

[42] J D S Jones, B W Westbury, Algebraic K–theory, homology spheres, and the η–invariant, Topology 34 (1995) 929 | DOI

[43] G G Kasparov, Equivariant KK–theory and the Novikov conjecture, Invent. Math. 91 (1988) 147 | DOI

[44] M A Kervaire, J W Milnor, Groups of homotopy spheres, I, Ann. of Math. 77 (1963) 504 | DOI

[45] M Kreck, S Stolz, A diffeomorphism classification of 7–dimensional homogeneous Einstein manifolds with SU(3) × SU(2) × U(1)–symmetry, Ann. of Math. 127 (1988) 373 | DOI

[46] G Laures, The topological q–expansion principle, PhD thesis, Massachusetts Institute of Technology (1996)

[47] G Laures, On cobordism of manifolds with corners, Trans. Amer. Math. Soc. 352 (2000) 5667 | DOI

[48] H B Lawson Jr., M L Michelsohn, Spin geometry, 38, Princeton Univ. Press (1989)

[49] J Lurie, A survey of elliptic cohomology, from: "Algebraic topology" (editors N A Baas, E M Friedlander, B Jahren, P A Østvær), Abel Symp. 4, Springer (2009) 219 | DOI

[50] E Y Miller, R Lee, Some invariants of spin manifolds, Topology Appl. 25 (1987) 301 | DOI

[51] H R Miller, D C Ravenel, W S Wilson, Periodic phenomena in the Adams–Novikov spectral sequence, Ann. of Math. 106 (1977) 469 | DOI

[52] M K Murray, An introduction to bundle gerbes, from: "The many facets of geometry" (editors O García-Prada, J P Bourguignon, S Salamon), Oxford Univ. Press (2010) 237 | DOI

[53] D Quillen, Letter from Quillen to Milnor on Im(πiO → πis → KiZ), from: "Algebraic K–theory" (editor M R Stein), Lecture Notes in Math. 551, Springer (1976) 182 | DOI

[54] D C Ravenel, Complex cobordism and stable homotopy groups of spheres, 121, Academic Press (1986)

[55] Y B Rudyak, On Thom spectra, orientability, and cobordism, Springer (1998) | DOI

[56] J A Seade, On the η–function of the Dirac operator on Γ∖S3, An. Inst. Mat. Univ. Nac. Autónoma México 21 (1981) 129

[57] J P Serre, Groupes d’homotopie et classes de groupes abéliens, Ann. of Math. 58 (1953) 258 | DOI

[58] A A Suslin, On the K–theory of local fields, J. Pure Appl. Algebra 34 (1984) 301 | DOI

[59] M Völkl, Universal geometrizations and the intrinsic eta-invariant, PhD thesis, Universität Regensburg (2015)

[60] K Waldorf, String connections and Chern–Simons theory, Trans. Amer. Math. Soc. 365 (2013) 4393 | DOI

Cité par Sources :