Presentation complexes with the fixed point property
Geometry & topology, Tome 21 (2017) no. 2, pp. 1275-1283.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We prove that there exists a compact two-dimensional polyhedron with the fixed point property and even Euler characteristic. This answers a question posed by R H Bing in 1969. We also settle a second question by Bing regarding the homotopy invariance of the fixed point property in low dimensions.

DOI : 10.2140/gt.2017.21.1275
Classification : 55M20, 57M05, 57M20
Keywords: fixed point property, two-dimensional complexes, efficient groups

Sadofschi Costa, Iván 1

1 Departamento de Matemática, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón I, C1428EGA Buenos Aires, Argentina
@article{GT_2017_21_2_a12,
     author = {Sadofschi Costa, Iv\'an},
     title = {Presentation complexes with the fixed point property},
     journal = {Geometry & topology},
     pages = {1275--1283},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2017},
     doi = {10.2140/gt.2017.21.1275},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.1275/}
}
TY  - JOUR
AU  - Sadofschi Costa, Iván
TI  - Presentation complexes with the fixed point property
JO  - Geometry & topology
PY  - 2017
SP  - 1275
EP  - 1283
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.1275/
DO  - 10.2140/gt.2017.21.1275
ID  - GT_2017_21_2_a12
ER  - 
%0 Journal Article
%A Sadofschi Costa, Iván
%T Presentation complexes with the fixed point property
%J Geometry & topology
%D 2017
%P 1275-1283
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.1275/
%R 10.2140/gt.2017.21.1275
%F GT_2017_21_2_a12
Sadofschi Costa, Iván. Presentation complexes with the fixed point property. Geometry & topology, Tome 21 (2017) no. 2, pp. 1275-1283. doi : 10.2140/gt.2017.21.1275. http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.1275/

[1] E Aichinger, F Binder, J Ecker, P Mayr, C Nöbauer, SONATA: system of nearrings and their applications, software (2012)

[2] J A Barmak, I Sadofschi Costa, On a question of R H Bing concerning the fixed point property for two-dimensional polyhedra, Adv. Math. 305 (2017) 339 | DOI

[3] R H Bing, The elusive fixed point property, Amer. Math. Monthly 76 (1969) 119 | DOI

[4] K Borsuk, Quelques théorèmes sur les ensembles unicohérents, Fund. Math. 17 (1931) 171

[5] K Borsuk, Über die Abbildungen der metrischen kompakten Räume auf die Kreislinie, Fund. Math. 20 (1933) 224

[6] C M Campbell, G Havas, C Ramsay, E F Robertson, On the efficiency of the simple groups of order less than a million and their covers, Experiment. Math. 16 (2007) 347

[7] C M Campbell, G Havas, C Ramsay, E F Robertson, All simple groups with order from 1 million to 5 million are efficient, Int. J. Group Theory 3 (2014) 17

[8] G Ellis, HAP: homological algebra programming, software (2013)

[9] D Gorenstein, R Lyons, R Solomon, The classification of the finite simple groups, I, Chapter 1: Overview, 40.1, Amer. Math. Soc. (1994) | DOI

[10] D Gorenstein, R Lyons, R Solomon, The classification of the finite simple groups, I, Chapter A : Almost simple K–groups, 40.3, Amer. Math. Soc. (1998) | DOI

[11] R M Guralnick, W M Kantor, M Kassabov, A Lubotzky, Presentations of finite simple groups: a computational approach, J. Eur. Math. Soc. (JEMS) 13 (2011) 391 | DOI

[12] C L Hagopian, An update on the elusive fixed-point property, from: "Open problems in topology, II" (editor E Pearl), Elsevier (2007) 263

[13] B J Jiang, On the least number of fixed points, Amer. J. Math. 102 (1980) 749 | DOI

[14] M P Latiolais, Homotopy and homology classification of 2–complexes, from: "Two-dimensional homotopy and combinatorial group theory" (editors C Hog-Angeloni, W Metzler), London Mathematical Society Lecture Note Series 197, Cambridge University Press (1993) 97 | DOI

[15] W Lopez, An example in the fixed point theory of polyhedra, Bull. Amer. Math. Soc. 73 (1967) 922 | DOI

[16] J Rosenberg, Algebraic K–theory and its applications, 147, Springer (1994) | DOI

[17] T G Group, GAP: groups, algorithms and programming, software (2015)

[18] R Waggoner, A method of combining fixed points, Proc. Amer. Math. Soc. 51 (1975) 191 | DOI

Cité par Sources :