Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We prove that there exists a compact two-dimensional polyhedron with the fixed point property and even Euler characteristic. This answers a question posed by R H Bing in 1969. We also settle a second question by Bing regarding the homotopy invariance of the fixed point property in low dimensions.
Sadofschi Costa, Iván 1
@article{GT_2017_21_2_a12, author = {Sadofschi Costa, Iv\'an}, title = {Presentation complexes with the fixed point property}, journal = {Geometry & topology}, pages = {1275--1283}, publisher = {mathdoc}, volume = {21}, number = {2}, year = {2017}, doi = {10.2140/gt.2017.21.1275}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.1275/} }
Sadofschi Costa, Iván. Presentation complexes with the fixed point property. Geometry & topology, Tome 21 (2017) no. 2, pp. 1275-1283. doi : 10.2140/gt.2017.21.1275. http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.1275/
[1] SONATA: system of nearrings and their applications, software (2012)
, , , , ,[2] On a question of R H Bing concerning the fixed point property for two-dimensional polyhedra, Adv. Math. 305 (2017) 339 | DOI
, ,[3] The elusive fixed point property, Amer. Math. Monthly 76 (1969) 119 | DOI
,[4] Quelques théorèmes sur les ensembles unicohérents, Fund. Math. 17 (1931) 171
,[5] Über die Abbildungen der metrischen kompakten Räume auf die Kreislinie, Fund. Math. 20 (1933) 224
,[6] On the efficiency of the simple groups of order less than a million and their covers, Experiment. Math. 16 (2007) 347
, , , ,[7] All simple groups with order from 1 million to 5 million are efficient, Int. J. Group Theory 3 (2014) 17
, , , ,[8] HAP: homological algebra programming, software (2013)
,[9] The classification of the finite simple groups, I, Chapter 1: Overview, 40.1, Amer. Math. Soc. (1994) | DOI
, , ,[10] The classification of the finite simple groups, I, Chapter A : Almost simple K–groups, 40.3, Amer. Math. Soc. (1998) | DOI
, , ,[11] Presentations of finite simple groups: a computational approach, J. Eur. Math. Soc. (JEMS) 13 (2011) 391 | DOI
, , , ,[12] An update on the elusive fixed-point property, from: "Open problems in topology, II" (editor E Pearl), Elsevier (2007) 263
,[13] On the least number of fixed points, Amer. J. Math. 102 (1980) 749 | DOI
,[14] Homotopy and homology classification of 2–complexes, from: "Two-dimensional homotopy and combinatorial group theory" (editors C Hog-Angeloni, W Metzler), London Mathematical Society Lecture Note Series 197, Cambridge University Press (1993) 97 | DOI
,[15] An example in the fixed point theory of polyhedra, Bull. Amer. Math. Soc. 73 (1967) 922 | DOI
,[16] Algebraic K–theory and its applications, 147, Springer (1994) | DOI
,[17] GAP: groups, algorithms and programming, software (2015)
,[18] A method of combining fixed points, Proc. Amer. Math. Soc. 51 (1975) 191 | DOI
,Cité par Sources :