Arboreal singularities
Geometry & topology, Tome 21 (2017) no. 2, pp. 1231-1274.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We introduce a class of combinatorial singularities of Lagrangian skeleta of symplectic manifolds. The link of each singularity is a finite regular cell complex homotopy equivalent to a bouquet of spheres. It is determined by its face poset, which is naturally constructed starting from a tree (nonempty finite acyclic graph). The choice of a root vertex of the tree leads to a natural front projection of the singularity along with an orientation of the edges of the tree. Microlocal sheaves along the singularity, calculated via the front projection, are equivalent to modules over the quiver given by the directed tree.

DOI : 10.2140/gt.2017.21.1231
Classification : 32S05, 53D37
Keywords: Lagrangian singularities, microlocal sheaves

Nadler, David 1

1 Department of Mathematics, University of California, Berkeley, Evans Hall, Berkeley, CA 94720-3840, United States
@article{GT_2017_21_2_a11,
     author = {Nadler, David},
     title = {Arboreal singularities},
     journal = {Geometry & topology},
     pages = {1231--1274},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2017},
     doi = {10.2140/gt.2017.21.1231},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.1231/}
}
TY  - JOUR
AU  - Nadler, David
TI  - Arboreal singularities
JO  - Geometry & topology
PY  - 2017
SP  - 1231
EP  - 1274
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.1231/
DO  - 10.2140/gt.2017.21.1231
ID  - GT_2017_21_2_a11
ER  - 
%0 Journal Article
%A Nadler, David
%T Arboreal singularities
%J Geometry & topology
%D 2017
%P 1231-1274
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.1231/
%R 10.2140/gt.2017.21.1231
%F GT_2017_21_2_a11
Nadler, David. Arboreal singularities. Geometry & topology, Tome 21 (2017) no. 2, pp. 1231-1274. doi : 10.2140/gt.2017.21.1231. http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.1231/

[1] F Ardila, M Develin, Tropical hyperplane arrangements and oriented matroids, Math. Z. 262 (2009) 795 | DOI

[2] I N Bernstein, I M Gelfand, V A Ponomarev, Coxeter functors and Gabriel’s theorem, Uspehi Mat. Nauk 28 (1973) 19

[3] J Bernstein, Algebraic theory of –modules, lecture notes

[4] L J Billera, A Björner, Face numbers of polytopes and complexes, from: "Handbook of discrete and computational geometry" (editors J E Goodman, J O’Rourke), CRC (1997) 291

[5] A Björner, Posets, regular CW complexes and Bruhat order, European J. Combin. 5 (1984) 7 | DOI

[6] M Develin, B Sturmfels, Tropical convexity, Doc. Math. 9 (2004) 1

[7] T Dyckerhoff, M Kapranov, Higher Segal spaces, I, preprint (2012)

[8] T Dyckerhoff, M Kapranov, Triangulated surfaces in triangulated categories, preprint (2013)

[9] M Kashiwara, P Schapira, Sheaves on manifolds, 292, Springer (1994) | DOI

[10] B Keller, On differential graded categories, from: "International Congress of Mathematicians, II" (editors M Sanz-Solé, J Soria, J L Varona, J Verdera), Eur. Math. Soc. (2006) 151

[11] M Kontsevich, Symplectic geometry of homological algebra, lecture notes (2009)

[12] J L Loday, The multiple facets of the associahedron, preprint (2005)

[13] C Mccrory, Cone complexes and PL transversality, Trans. Amer. Math. Soc. 207 (1975) 269 | DOI

[14] D Nadler, Cyclic symmetries of An–quiver representations, Adv. Math. 269 (2015) 346 | DOI

[15] D Nadler, Non-characteristic expansions of Legendrian singularities, preprint (2015)

[16] D Nadler, Mirror symmetry for the Landau–Ginzburg A-model M = Cn, W = z1⋯zn, preprint (2016)

[17] D Nadler, Wrapped microlocal sheaves on pairs of pants, preprint (2016)

[18] D Nadler, A combinatorial calculation of the Landau–Ginzburg model M = C3, W = z1z2z3, Selecta Math. 23 (2017) 519 | DOI

[19] L Ng, D Rutherford, V Shende, S Sivek, E Zaslow, Augmentations are sheaves, preprint (2015)

[20] P Seidel, Fukaya categories and Picard–Lefschetz theory, European Mathematical Society (2008) | DOI

[21] V Shende, D Treumann, E Zaslow, Legendrian knots and constructible sheaves, preprint (2014)

[22] D Speyer, B Sturmfels, Tropical mathematics, lecture notes (2004)

[23] J D Stasheff, Homotopy associativity of H–spaces, I, Trans. Amer. Math. Soc. 108 (1963) 275

[24] J D Stasheff, Homotopy associativity of H–spaces, II, Trans. Amer. Math. Soc. 108 (1963) 293

[25] M L Wachs, Poset topology: tools and applications, from: "Geometric combinatorics" (editors E Miller, V Reiner, B Sturmfels), IAS/Park City Math. Ser. 13, Amer. Math. Soc. (2007) 497

Cité par Sources :