A very special EPW sextic and two IHS fourfolds
Geometry & topology, Tome 21 (2017) no. 2, pp. 1179-1230.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We show that the Hilbert scheme of two points on the Vinberg K3 surface has a two-to-one map onto a very symmetric EPW sextic Y in 5. The fourfold Y is singular along 60 planes, 20 of which form a complete family of incident planes. This solves a problem of Morin and O’Grady and establishes that 20 is the maximal cardinality of such a family of planes. Next, we show that this Hilbert scheme is birationally isomorphic to the Kummer-type IHS fourfold X0 constructed by Donten-Bury and Wiśniewski [On 81 symplectic resolutions of a 4–dimensional quotient by a group of order 32, preprint (2014)]. We find that X0 is also related to the Debarre–Varley abelian fourfold.

DOI : 10.2140/gt.2017.21.1179
Classification : 14D06, 14J35, 14J70, 14K12, 14M07, 14J50, 14J28
Keywords: EPW sextics, IHS fourfolds, abelian varieties

Donten-Bury, Maria 1 ; van Geemen, Bert 2 ; Kapustka, Grzegorz 3 ; Kapustka, Michał 4 ; Wiśniewski, Jarosław 5

1 Institute of Mathematics, Freie Universität Berlin, Arnimallee 3, D-14195 Berlin, Germany
2 Department of Mathematics, University di Milano, I-20133 Milan, Italy
3 Institute of Mathematics of the Polish Academy of Sciences, ul. Sniadeckich 8, P.O. Box 21, 00-656 Warszawa, Poland
4 Department of Mathematics and Informatics, Jagiellonian University, Łojasiewicza 6, 30-348 Kraków, Poland
5 Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Banacha 2, 02-097 Warszawa, Poland
@article{GT_2017_21_2_a10,
     author = {Donten-Bury, Maria and van Geemen, Bert and Kapustka, Grzegorz and Kapustka, Micha{\l} and Wi\'sniewski, Jaros{\l}aw},
     title = {A very special {EPW} sextic and two {IHS} fourfolds},
     journal = {Geometry & topology},
     pages = {1179--1230},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2017},
     doi = {10.2140/gt.2017.21.1179},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.1179/}
}
TY  - JOUR
AU  - Donten-Bury, Maria
AU  - van Geemen, Bert
AU  - Kapustka, Grzegorz
AU  - Kapustka, Michał
AU  - Wiśniewski, Jarosław
TI  - A very special EPW sextic and two IHS fourfolds
JO  - Geometry & topology
PY  - 2017
SP  - 1179
EP  - 1230
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.1179/
DO  - 10.2140/gt.2017.21.1179
ID  - GT_2017_21_2_a10
ER  - 
%0 Journal Article
%A Donten-Bury, Maria
%A van Geemen, Bert
%A Kapustka, Grzegorz
%A Kapustka, Michał
%A Wiśniewski, Jarosław
%T A very special EPW sextic and two IHS fourfolds
%J Geometry & topology
%D 2017
%P 1179-1230
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.1179/
%R 10.2140/gt.2017.21.1179
%F GT_2017_21_2_a10
Donten-Bury, Maria; van Geemen, Bert; Kapustka, Grzegorz; Kapustka, Michał; Wiśniewski, Jarosław. A very special EPW sextic and two IHS fourfolds. Geometry & topology, Tome 21 (2017) no. 2, pp. 1179-1230. doi : 10.2140/gt.2017.21.1179. http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.1179/

[1] M F Atiyah, R Bott, A Lefschetz fixed point formula for elliptic complexes, II : Applications, Ann. of Math. 88 (1968) 451 | DOI

[2] A Beauville, Variétés Kähleriennes dont la première classe de Chern est nulle, J. Differential Geom. 18 (1983) 755

[3] G Bellamy, T Schedler, A new linear quotient of C4 admitting a symplectic resolution, Math. Z. 273 (2013) 753 | DOI

[4] C Birkenhake, H Lange, Complex abelian varieties, 302, Springer (2004) | DOI

[5] W Bosma, J Cannon, C Playoust, The Magma algebra system, I : The user language, J. Symbolic Comput. 24 (1997) 235 | DOI

[6] O Debarre, Annulation de thêtaconstantes sur les variétés abéliennes de dimension quatre, C. R. Acad. Sci. Paris Sér. I Math. 305 (1987) 885

[7] L Dixon, J A Harvey, C Vafa, E Witten, Strings on orbifolds, Nuclear Phys. B 261 (1985) 678 | DOI

[8] I V Dolgachev, Classical algebraic geometry: a modern view, Cambridge University Press (2012) | DOI

[9] I Dolgachev, Corrado Segre and nodal cubic threefolds, preprint (2015)

[10] I V Dolgachev, D Markushevich, Mutually intersecting planes in P5, Enriques surfaces, cubic 4–folds, and EPW-septics, Oberwolfach Rep. 7 (2010) 1603 | DOI

[11] M Donten-Bury, J A Wiśniewski, On 81 symplectic resolutions of a 4–dimensional quotient by a group of order 32, (2014)

[12] D Eisenbud, S Popescu, C Walter, Lagrangian subbundles and codimension 3 subcanonical subschemes, Duke Math. J. 107 (2001) 427 | DOI

[13] B Van Geemen, J Top, An isogeny of K3 surfaces, Bull. London Math. Soc. 38 (2006) 209 | DOI

[14] D R Grayson, M E Stillman, Macaulay2, a software system for research in algebraic geometry

[15] P Griffiths, J Harris, Principles of algebraic geometry, Wiley-Interscience (1978)

[16] G Hoehn, G Mason, Finite groups of symplectic automorphisms of hyperkähler manifolds of type K3[2], preprint (2014)

[17] G Kapustka, On IHS fourfolds with b2 = 23, Michigan Math. J. 65 (2016) 3 | DOI

[18] J Kollár, Shafarevich maps and plurigenera of algebraic varieties, Invent. Math. 113 (1993) 177 | DOI

[19] H Maschke, Ueber die quaternäre, endliche, lineare Substitutionsgruppe der Borchardt’schen Moduln, Math. Ann. 30 (1887) 496 | DOI

[20] U Morin, Sui sistemi di piani a due a due incidenti, Atti Istituto Veneto 89, 907-926 (1930), Atti Istituto Veneto 89 (1930) 907

[21] K G O’Grady, Involutions and linear systems on holomorphic symplectic manifolds, Geom. Funct. Anal. 15 (2005) 1223 | DOI

[22] K G O’Grady, Irreducible symplectic 4–folds and Eisenbud–Popescu–Walter sextics, Duke Math. J. 134 (2006) 99 | DOI

[23] K O’Grady, Double covers of EPW-sextics, Michigan Math. J. 62 (2013) 143 | DOI

[24] K G O’Grady, Pairwise incident planes and hyperkähler four-folds, from: "A celebration of algebraic geometry" (editors B Hassett, J McKernan, J Starr, R Vakil), Clay Math. Proc. 18, Amer. Math. Soc. (2013) 553

[25] Y G Prokhorov, Fields of invariants of finite linear groups, from: "Cohomological and geometric approaches to rationality problems" (editors F Bogomolov, Y Tschinkel), Progr. Math. 282, Birkhäuser (2010) 245 | DOI

[26] R Varley, Weddle’s surfaces, Humbert’s curves, and a certain 4–dimensional abelian variety, Amer. J. Math. 108 (1986) 931 | DOI

[27] È B Vinberg, The two most algebraic K3 surfaces, Math. Ann. 265 (1983) 1 | DOI

Cité par Sources :