Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We show that the Hilbert scheme of two points on the Vinberg surface has a two-to-one map onto a very symmetric EPW sextic in . The fourfold is singular along planes, of which form a complete family of incident planes. This solves a problem of Morin and O’Grady and establishes that is the maximal cardinality of such a family of planes. Next, we show that this Hilbert scheme is birationally isomorphic to the Kummer-type IHS fourfold constructed by Donten-Bury and Wiśniewski [On 81 symplectic resolutions of a 4–dimensional quotient by a group of order , preprint (2014)]. We find that is also related to the Debarre–Varley abelian fourfold.
Donten-Bury, Maria 1 ; van Geemen, Bert 2 ; Kapustka, Grzegorz 3 ; Kapustka, Michał 4 ; Wiśniewski, Jarosław 5
@article{GT_2017_21_2_a10, author = {Donten-Bury, Maria and van Geemen, Bert and Kapustka, Grzegorz and Kapustka, Micha{\l} and Wi\'sniewski, Jaros{\l}aw}, title = {A very special {EPW} sextic and two {IHS} fourfolds}, journal = {Geometry & topology}, pages = {1179--1230}, publisher = {mathdoc}, volume = {21}, number = {2}, year = {2017}, doi = {10.2140/gt.2017.21.1179}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.1179/} }
TY - JOUR AU - Donten-Bury, Maria AU - van Geemen, Bert AU - Kapustka, Grzegorz AU - Kapustka, Michał AU - Wiśniewski, Jarosław TI - A very special EPW sextic and two IHS fourfolds JO - Geometry & topology PY - 2017 SP - 1179 EP - 1230 VL - 21 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.1179/ DO - 10.2140/gt.2017.21.1179 ID - GT_2017_21_2_a10 ER -
%0 Journal Article %A Donten-Bury, Maria %A van Geemen, Bert %A Kapustka, Grzegorz %A Kapustka, Michał %A Wiśniewski, Jarosław %T A very special EPW sextic and two IHS fourfolds %J Geometry & topology %D 2017 %P 1179-1230 %V 21 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.1179/ %R 10.2140/gt.2017.21.1179 %F GT_2017_21_2_a10
Donten-Bury, Maria; van Geemen, Bert; Kapustka, Grzegorz; Kapustka, Michał; Wiśniewski, Jarosław. A very special EPW sextic and two IHS fourfolds. Geometry & topology, Tome 21 (2017) no. 2, pp. 1179-1230. doi : 10.2140/gt.2017.21.1179. http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.1179/
[1] A Lefschetz fixed point formula for elliptic complexes, II : Applications, Ann. of Math. 88 (1968) 451 | DOI
, ,[2] Variétés Kähleriennes dont la première classe de Chern est nulle, J. Differential Geom. 18 (1983) 755
,[3] A new linear quotient of C4 admitting a symplectic resolution, Math. Z. 273 (2013) 753 | DOI
, ,[4] Complex abelian varieties, 302, Springer (2004) | DOI
, ,[5] The Magma algebra system, I : The user language, J. Symbolic Comput. 24 (1997) 235 | DOI
, , ,[6] Annulation de thêtaconstantes sur les variétés abéliennes de dimension quatre, C. R. Acad. Sci. Paris Sér. I Math. 305 (1987) 885
,[7] Strings on orbifolds, Nuclear Phys. B 261 (1985) 678 | DOI
, , , ,[8] Classical algebraic geometry: a modern view, Cambridge University Press (2012) | DOI
,[9] Corrado Segre and nodal cubic threefolds, preprint (2015)
,[10] Mutually intersecting planes in P5, Enriques surfaces, cubic 4–folds, and EPW-septics, Oberwolfach Rep. 7 (2010) 1603 | DOI
, ,[11] On 81 symplectic resolutions of a 4–dimensional quotient by a group of order 32, (2014)
, ,[12] Lagrangian subbundles and codimension 3 subcanonical subschemes, Duke Math. J. 107 (2001) 427 | DOI
, , ,[13] An isogeny of K3 surfaces, Bull. London Math. Soc. 38 (2006) 209 | DOI
, ,[14] Macaulay2, a software system for research in algebraic geometry
, ,[15] Principles of algebraic geometry, Wiley-Interscience (1978)
, ,[16] Finite groups of symplectic automorphisms of hyperkähler manifolds of type K3[2], preprint (2014)
, ,[17] On IHS fourfolds with b2 = 23, Michigan Math. J. 65 (2016) 3 | DOI
,[18] Shafarevich maps and plurigenera of algebraic varieties, Invent. Math. 113 (1993) 177 | DOI
,[19] Ueber die quaternäre, endliche, lineare Substitutionsgruppe der Borchardt’schen Moduln, Math. Ann. 30 (1887) 496 | DOI
,[20] Sui sistemi di piani a due a due incidenti, Atti Istituto Veneto 89, 907-926 (1930), Atti Istituto Veneto 89 (1930) 907
,[21] Involutions and linear systems on holomorphic symplectic manifolds, Geom. Funct. Anal. 15 (2005) 1223 | DOI
,[22] Irreducible symplectic 4–folds and Eisenbud–Popescu–Walter sextics, Duke Math. J. 134 (2006) 99 | DOI
,[23] Double covers of EPW-sextics, Michigan Math. J. 62 (2013) 143 | DOI
,[24] Pairwise incident planes and hyperkähler four-folds, from: "A celebration of algebraic geometry" (editors B Hassett, J McKernan, J Starr, R Vakil), Clay Math. Proc. 18, Amer. Math. Soc. (2013) 553
,[25] Fields of invariants of finite linear groups, from: "Cohomological and geometric approaches to rationality problems" (editors F Bogomolov, Y Tschinkel), Progr. Math. 282, Birkhäuser (2010) 245 | DOI
,[26] Weddle’s surfaces, Humbert’s curves, and a certain 4–dimensional abelian variety, Amer. J. Math. 108 (1986) 931 | DOI
,[27] The two most algebraic K3 surfaces, Math. Ann. 265 (1983) 1 | DOI
,Cité par Sources :