Outer space for untwisted automorphisms of right-angled Artin groups
Geometry & topology, Tome 21 (2017) no. 2, pp. 1131-1178.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

For a right-angled Artin group AΓ, the untwisted outer automorphism group U(AΓ) is the subgroup of Out(AΓ) generated by all of the Laurence–Servatius generators except twists (where a twist is an automorphism of the form vvw with vw = wv). We define a space ΣΓ on which U(AΓ) acts properly and prove that ΣΓ is contractible, providing a geometric model for U(AΓ) and its subgroups. We also propose a geometric model for all of Out(AΓ), defined by allowing more general markings and metrics on points of ΣΓ.

DOI : 10.2140/gt.2017.21.1131
Classification : 20F65, 20F28, 20F36
Keywords: automorphisms, right-angled Artin groups

Charney, Ruth 1 ; Stambaugh, Nathaniel 2 ; Vogtmann, Karen 3

1 Department of Mathematics, Brandeis University, Waltham, MA 02453, United States
2 Department of Mentoring, Western Governors University, General Education, Salt Lake City, UT 84107, United States
3 Mathematics Institute, University of Warwick, Zeeman Building, Coventry, CV4 7AL, United Kingdom
@article{GT_2017_21_2_a9,
     author = {Charney, Ruth and Stambaugh, Nathaniel and Vogtmann, Karen},
     title = {Outer space for untwisted automorphisms of right-angled {Artin} groups},
     journal = {Geometry & topology},
     pages = {1131--1178},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2017},
     doi = {10.2140/gt.2017.21.1131},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.1131/}
}
TY  - JOUR
AU  - Charney, Ruth
AU  - Stambaugh, Nathaniel
AU  - Vogtmann, Karen
TI  - Outer space for untwisted automorphisms of right-angled Artin groups
JO  - Geometry & topology
PY  - 2017
SP  - 1131
EP  - 1178
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.1131/
DO  - 10.2140/gt.2017.21.1131
ID  - GT_2017_21_2_a9
ER  - 
%0 Journal Article
%A Charney, Ruth
%A Stambaugh, Nathaniel
%A Vogtmann, Karen
%T Outer space for untwisted automorphisms of right-angled Artin groups
%J Geometry & topology
%D 2017
%P 1131-1178
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.1131/
%R 10.2140/gt.2017.21.1131
%F GT_2017_21_2_a9
Charney, Ruth; Stambaugh, Nathaniel; Vogtmann, Karen. Outer space for untwisted automorphisms of right-angled Artin groups. Geometry & topology, Tome 21 (2017) no. 2, pp. 1131-1178. doi : 10.2140/gt.2017.21.1131. http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.1131/

[1] I Agol, The virtual Haken conjecture, Doc. Math. 18 (2013) 1045

[2] K U Bux, R Charney, K Vogtmann, Automorphisms of two-dimensional RAAGS and partially symmetric automorphisms of free groups, Groups Geom. Dyn. 3 (2009) 541 | DOI

[3] R Charney, An introduction to right-angled Artin groups, Geom. Dedicata 125 (2007) 141 | DOI

[4] R Charney, J Crisp, K Vogtmann, Automorphisms of 2–dimensional right-angled Artin groups, Geom. Topol. 11 (2007) 2227 | DOI

[5] R Charney, K Vogtmann, Finiteness properties of automorphism groups of right-angled Artin groups, Bull. Lond. Math. Soc. 41 (2009) 94 | DOI

[6] R Charney, K Vogtmann, Subgroups and quotients of automorphism groups of RAAGs, from: "Low-dimensional and symplectic topology" (editor M Usher), Proc. Sympos. Pure Math. 82, Amer. Math. Soc. (2011) 9 | DOI

[7] M Culler, K Vogtmann, Moduli of graphs and automorphisms of free groups, Invent. Math. 84 (1986) 91 | DOI

[8] M B Day, Peak reduction and finite presentations for automorphism groups of right-angled Artin groups, Geom. Topol. 13 (2009) 817 | DOI

[9] M B Day, Full-featured peak reduction in right-angled Artin groups, Algebr. Geom. Topol. 14 (2014) 1677 | DOI

[10] F Haglund, D T Wise, Special cube complexes, Geom. Funct. Anal. 17 (2008) 1551 | DOI

[11] A H M Hoare, Coinitial graphs and Whitehead automorphisms, Canad. J. Math. 31 (1979) 112 | DOI

[12] M R Laurence, A generating set for the automorphism group of a graph group, J. London Math. Soc. 52 (1995) 318 | DOI

[13] D Quillen, Higher algebraic K–theory, I, from: "Algebraic K–theory, I : Higher K–theories" (editor H Bass), Lecture Notes in Math. 341, Springer (1973) 85 | DOI

[14] H Servatius, Automorphisms of graph groups, J. Algebra 126 (1989) 34 | DOI

[15] A Vijayan, Compactifying the space of length functions of a right-angled Artin group, preprint (2015)

Cité par Sources :