Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
For a right-angled Artin group , the untwisted outer automorphism group is the subgroup of generated by all of the Laurence–Servatius generators except twists (where a twist is an automorphism of the form with ). We define a space on which acts properly and prove that is contractible, providing a geometric model for and its subgroups. We also propose a geometric model for all of , defined by allowing more general markings and metrics on points of .
Charney, Ruth 1 ; Stambaugh, Nathaniel 2 ; Vogtmann, Karen 3
@article{GT_2017_21_2_a9, author = {Charney, Ruth and Stambaugh, Nathaniel and Vogtmann, Karen}, title = {Outer space for untwisted automorphisms of right-angled {Artin} groups}, journal = {Geometry & topology}, pages = {1131--1178}, publisher = {mathdoc}, volume = {21}, number = {2}, year = {2017}, doi = {10.2140/gt.2017.21.1131}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.1131/} }
TY - JOUR AU - Charney, Ruth AU - Stambaugh, Nathaniel AU - Vogtmann, Karen TI - Outer space for untwisted automorphisms of right-angled Artin groups JO - Geometry & topology PY - 2017 SP - 1131 EP - 1178 VL - 21 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.1131/ DO - 10.2140/gt.2017.21.1131 ID - GT_2017_21_2_a9 ER -
%0 Journal Article %A Charney, Ruth %A Stambaugh, Nathaniel %A Vogtmann, Karen %T Outer space for untwisted automorphisms of right-angled Artin groups %J Geometry & topology %D 2017 %P 1131-1178 %V 21 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.1131/ %R 10.2140/gt.2017.21.1131 %F GT_2017_21_2_a9
Charney, Ruth; Stambaugh, Nathaniel; Vogtmann, Karen. Outer space for untwisted automorphisms of right-angled Artin groups. Geometry & topology, Tome 21 (2017) no. 2, pp. 1131-1178. doi : 10.2140/gt.2017.21.1131. http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.1131/
[1] The virtual Haken conjecture, Doc. Math. 18 (2013) 1045
,[2] Automorphisms of two-dimensional RAAGS and partially symmetric automorphisms of free groups, Groups Geom. Dyn. 3 (2009) 541 | DOI
, , ,[3] An introduction to right-angled Artin groups, Geom. Dedicata 125 (2007) 141 | DOI
,[4] Automorphisms of 2–dimensional right-angled Artin groups, Geom. Topol. 11 (2007) 2227 | DOI
, , ,[5] Finiteness properties of automorphism groups of right-angled Artin groups, Bull. Lond. Math. Soc. 41 (2009) 94 | DOI
, ,[6] Subgroups and quotients of automorphism groups of RAAGs, from: "Low-dimensional and symplectic topology" (editor M Usher), Proc. Sympos. Pure Math. 82, Amer. Math. Soc. (2011) 9 | DOI
, ,[7] Moduli of graphs and automorphisms of free groups, Invent. Math. 84 (1986) 91 | DOI
, ,[8] Peak reduction and finite presentations for automorphism groups of right-angled Artin groups, Geom. Topol. 13 (2009) 817 | DOI
,[9] Full-featured peak reduction in right-angled Artin groups, Algebr. Geom. Topol. 14 (2014) 1677 | DOI
,[10] Special cube complexes, Geom. Funct. Anal. 17 (2008) 1551 | DOI
, ,[11] Coinitial graphs and Whitehead automorphisms, Canad. J. Math. 31 (1979) 112 | DOI
,[12] A generating set for the automorphism group of a graph group, J. London Math. Soc. 52 (1995) 318 | DOI
,[13] Higher algebraic K–theory, I, from: "Algebraic K–theory, I : Higher K–theories" (editor H Bass), Lecture Notes in Math. 341, Springer (1973) 85 | DOI
,[14] Automorphisms of graph groups, J. Algebra 126 (1989) 34 | DOI
,[15] Compactifying the space of length functions of a right-angled Artin group, preprint (2015)
,Cité par Sources :