A higher chromatic analogue of the image of J
Geometry & topology, Tome 21 (2017) no. 2, pp. 1033-1093.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We prove a higher chromatic analogue of Snaith’s theorem which identifies the K–theory spectrum as the localisation of the suspension spectrum of away from the Bott class; in this result, higher Eilenberg–MacLane spaces play the role of = K(,2). Using this, we obtain a partial computation of the part of the Picard-graded homotopy of the K(n)–local sphere indexed by powers of a spectrum which for large primes is a shift of the Gross–Hopkins dual of the sphere. Our main technical tool is a K(n)–local notion generalising complex orientation to higher Eilenberg–MacLane spaces. As for complex-oriented theories, such an orientation produces a one-dimensional formal group law as an invariant of the cohomology theory. As an application, we prove a theorem that gives evidence for the chromatic redshift conjecture.

DOI : 10.2140/gt.2017.21.1033
Classification : 19L20, 55N15, 55P20, 55P42, 55Q51
Keywords: chromatic homotopy theory, Picard group, Snaith theorem, redshift conjecture

Westerland, Craig 1

1 School of Mathematics, University of Minnesota, 127 Vincent Hall, 206 Church St SE, Minneapolis, MN 55455, United States
@article{GT_2017_21_2_a7,
     author = {Westerland, Craig},
     title = {A higher chromatic analogue of the image of {J}},
     journal = {Geometry & topology},
     pages = {1033--1093},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2017},
     doi = {10.2140/gt.2017.21.1033},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.1033/}
}
TY  - JOUR
AU  - Westerland, Craig
TI  - A higher chromatic analogue of the image of J
JO  - Geometry & topology
PY  - 2017
SP  - 1033
EP  - 1093
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.1033/
DO  - 10.2140/gt.2017.21.1033
ID  - GT_2017_21_2_a7
ER  - 
%0 Journal Article
%A Westerland, Craig
%T A higher chromatic analogue of the image of J
%J Geometry & topology
%D 2017
%P 1033-1093
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.1033/
%R 10.2140/gt.2017.21.1033
%F GT_2017_21_2_a7
Westerland, Craig. A higher chromatic analogue of the image of J. Geometry & topology, Tome 21 (2017) no. 2, pp. 1033-1093. doi : 10.2140/gt.2017.21.1033. http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.1033/

[1] J F Adams, On the groups J(X), II, Topology 3 (1965) 137 | DOI

[2] J F Adams, On the groups J(X), IV, Topology 5 (1966) 21 | DOI

[3] M Ando, A J Blumberg, D J Gepner, M J Hopkins, C Rezk, Units of ring spectra and Thom spectra, preprint (2008)

[4] M Ando, M J Hopkins, C Rezk, Multiplicative orientations of KO–theory and the spectrum of topological modular forms, preprint (2010)

[5] C Ausoni, On the algebraic K–theory of the complex K–theory spectrum, Invent. Math. 180 (2010) 611 | DOI

[6] C Ausoni, J Rognes, The chromatic red-shift in algebraic K–theory, L’Enseignement Mathématique 54 (2008) 13

[7] M Behrens, D G Davis, The homotopy fixed point spectra of profinite Galois extensions, Trans. Amer. Math. Soc. 362 (2010) 4983 | DOI

[8] A K Bousfield, The localization of spectra with respect to homology, Topology 18 (1979) 257 | DOI

[9] A K Bousfield, On the telescopic homotopy theory of spaces, Trans. Amer. Math. Soc. 353 (2001) 2391 | DOI

[10] P Bouwknegt, A L Carey, V Mathai, M K Murray, D Stevenson, Twisted K–theory and K–theory of bundle gerbes, Comm. Math. Phys. 228 (2002) 17 | DOI

[11] D G Davis, Homotopy fixed points for LK(n)(En ∧ X) using the continuous action, J. Pure Appl. Algebra 206 (2006) 322 | DOI

[12] D G Davis, Iterated homotopy fixed points for the Lubin–Tate spectrum, Topology Appl. 156 (2009) 2881 | DOI

[13] E S Devinatz, M J Hopkins, Homotopy fixed point spectra for closed subgroups of the Morava stabilizer groups, Topology 43 (2004) 1 | DOI

[14] A D Elmendorf, I Kriz, M A Mandell, J P May, Rings, modules, and algebras in stable homotopy theory, 47, Amer. Math. Soc. (1997)

[15] A D Elmendorf, M A Mandell, Rings, modules, and algebras in infinite loop space theory, Adv. Math. 205 (2006) 163 | DOI

[16] P G Goerss, H W Henn, The Brown–Comenetz dual of the K(2)–local sphere at the prime 3, Adv. Math. 288 (2016) 648 | DOI

[17] P G Goerss, H W Henn, M Mahowald, The rational homotopy of the K(2)–local sphere and the chromatic splitting conjecture for the prime 3 and level 2, Doc. Math. 19 (2014) 1271

[18] P Goerss, H W Henn, M Mahowald, C Rezk, A resolution of the K(2)–local sphere at the prime 3, Ann. of Math. 162 (2005) 777 | DOI

[19] P Goerss, H W Henn, M Mahowald, C Rezk, On Hopkins’ Picard groups for the prime 3 and chromatic level 2, J. Topol. 8 (2015) 267 | DOI

[20] P G Goerss, M J Hopkins, Moduli spaces of commutative ring spectra, from: "Structured ring spectra", London Math. Soc. Lecture Note Ser. 315, Cambridge Univ. Press (2004) 151 | DOI

[21] P G Goerss, M J Hopkins, Moduli problems for structured ring spectra, preprint (2005)

[22] L Hesselholt, I Madsen, On the K–theory of local fields, Ann. of Math. 158 (2003) 1 | DOI

[23] M J Hopkins, B H Gross, The rigid analytic period mapping, Lubin–Tate space, and stable homotopy theory, Bull. Amer. Math. Soc. 30 (1994) 76 | DOI

[24] M J Hopkins, M Mahowald, H Sadofsky, Constructions of elements in Picard groups, from: "Topology and representation theory" (editors E M Friedlander, M Mahowald), Contemp. Math. 158, Amer. Math. Soc. (1994) 89 | DOI

[25] M J Hopkins, J H Smith, Nilpotence and stable homotopy theory, II, Ann. of Math. 148 (1998) 1 | DOI

[26] M Hovey, Operations and co-operations in Morava E–theory, Homology Homotopy Appl. 6 (2004) 201 | DOI

[27] M Hovey, N P Strickland, Morava K–theories and localisation, 666, Amer. Math. Soc. (1999) | DOI

[28] L G Lewis Jr., J P May, M Steinberger, J E Mcclure, Equivariant stable homotopy theory, 1213, Springer (1986) | DOI

[29] M Mahowald, N Ray, A note on the Thom isomorphism, Proc. Amer. Math. Soc. 82 (1981) 307 | DOI

[30] J P May, E∞ ring spaces and E∞ ring spectra, 577, Springer (1977) 268

[31] J P May, What are E∞ ring spaces good for ?, from: "New topological contexts for Galois theory and algebraic geometry" (editors A Baker, B Richter), Geom. Topol. Monogr. 16, Geom. Topol. Publ. (2009) 331 | DOI

[32] H R Miller, D C Ravenel, W S Wilson, Periodic phenomena in the Adams–Novikov spectral sequence, Ann. of Math. 106 (1977) 469 | DOI

[33] S A Mitchell, Hypercohomology spectra and Thomason’s descent theorem, from: "Algebraic K–theory" (editor V P Snaith), Fields Inst. Commun. 16, Amer. Math. Soc. (1997) 221

[34] J Morava, Noetherian localisations of categories of cobordism comodules, Ann. of Math. 121 (1985) 1 | DOI

[35] M K Murray, An introduction to bundle gerbes, from: "The many facets of geometry" (editors O García-Prada, J P Bourguignon, S Salamon), Oxford Univ. Press (2010) 237 | DOI

[36] E Peterson, The Morava E–theory of Eilenberg–Mac Lane spaces, preprint (2011)

[37] E Peterson, Annular decomposition of coalgebraic formal variety spectra, preprint (2013)

[38] D Quillen, The Adams conjecture, Topology 10 (1971) 67 | DOI

[39] D C Ravenel, The structure of Morava stabilizer algebras, Invent. Math. 37 (1976) 109 | DOI

[40] D C Ravenel, W S Wilson, The Morava K–theories of Eilenberg–Mac Lane spaces and the Conner–Floyd conjecture, Amer. J. Math. 102 (1980) 691 | DOI

[41] H Sati, C Westerland, Twisted Morava K–theory and E–theory,

[42] G Segal, The stable homotopy of complex projective space, Quart. J. Math. Oxford Ser. 24 (1973) 1 | DOI

[43] V P Snaith, Algebraic cobordism and K–theory, 221, Amer. Math. Soc. (1979) | DOI

[44] M Spitzweck, P A Østvær, The Bott inverted infinite projective space is homotopy algebraic K–theory, Bull. Lond. Math. Soc. 41 (2009) 281 | DOI

[45] N P Strickland, Gross–Hopkins duality, Topology 39 (2000) 1021 | DOI

[46] R W Thomason, Algebraic K–theory and étale cohomology, Ann. Sci. École Norm. Sup. 18 (1985) 437

Cité par Sources :