Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We prove a higher chromatic analogue of Snaith’s theorem which identifies the –theory spectrum as the localisation of the suspension spectrum of away from the Bott class; in this result, higher Eilenberg–MacLane spaces play the role of . Using this, we obtain a partial computation of the part of the Picard-graded homotopy of the –local sphere indexed by powers of a spectrum which for large primes is a shift of the Gross–Hopkins dual of the sphere. Our main technical tool is a –local notion generalising complex orientation to higher Eilenberg–MacLane spaces. As for complex-oriented theories, such an orientation produces a one-dimensional formal group law as an invariant of the cohomology theory. As an application, we prove a theorem that gives evidence for the chromatic redshift conjecture.
Westerland, Craig 1
@article{GT_2017_21_2_a7, author = {Westerland, Craig}, title = {A higher chromatic analogue of the image of {J}}, journal = {Geometry & topology}, pages = {1033--1093}, publisher = {mathdoc}, volume = {21}, number = {2}, year = {2017}, doi = {10.2140/gt.2017.21.1033}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.1033/} }
Westerland, Craig. A higher chromatic analogue of the image of J. Geometry & topology, Tome 21 (2017) no. 2, pp. 1033-1093. doi : 10.2140/gt.2017.21.1033. http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.1033/
[1] On the groups J(X), II, Topology 3 (1965) 137 | DOI
,[2] On the groups J(X), IV, Topology 5 (1966) 21 | DOI
,[3] Units of ring spectra and Thom spectra, preprint (2008)
, , , , ,[4] Multiplicative orientations of KO–theory and the spectrum of topological modular forms, preprint (2010)
, , ,[5] On the algebraic K–theory of the complex K–theory spectrum, Invent. Math. 180 (2010) 611 | DOI
,[6] The chromatic red-shift in algebraic K–theory, L’Enseignement Mathématique 54 (2008) 13
, ,[7] The homotopy fixed point spectra of profinite Galois extensions, Trans. Amer. Math. Soc. 362 (2010) 4983 | DOI
, ,[8] The localization of spectra with respect to homology, Topology 18 (1979) 257 | DOI
,[9] On the telescopic homotopy theory of spaces, Trans. Amer. Math. Soc. 353 (2001) 2391 | DOI
,[10] Twisted K–theory and K–theory of bundle gerbes, Comm. Math. Phys. 228 (2002) 17 | DOI
, , , , ,[11] Homotopy fixed points for LK(n)(En ∧ X) using the continuous action, J. Pure Appl. Algebra 206 (2006) 322 | DOI
,[12] Iterated homotopy fixed points for the Lubin–Tate spectrum, Topology Appl. 156 (2009) 2881 | DOI
,[13] Homotopy fixed point spectra for closed subgroups of the Morava stabilizer groups, Topology 43 (2004) 1 | DOI
, ,[14] Rings, modules, and algebras in stable homotopy theory, 47, Amer. Math. Soc. (1997)
, , , ,[15] Rings, modules, and algebras in infinite loop space theory, Adv. Math. 205 (2006) 163 | DOI
, ,[16] The Brown–Comenetz dual of the K(2)–local sphere at the prime 3, Adv. Math. 288 (2016) 648 | DOI
, ,[17] The rational homotopy of the K(2)–local sphere and the chromatic splitting conjecture for the prime 3 and level 2, Doc. Math. 19 (2014) 1271
, , ,[18] A resolution of the K(2)–local sphere at the prime 3, Ann. of Math. 162 (2005) 777 | DOI
, , , ,[19] On Hopkins’ Picard groups for the prime 3 and chromatic level 2, J. Topol. 8 (2015) 267 | DOI
, , , ,[20] Moduli spaces of commutative ring spectra, from: "Structured ring spectra", London Math. Soc. Lecture Note Ser. 315, Cambridge Univ. Press (2004) 151 | DOI
, ,[21] Moduli problems for structured ring spectra, preprint (2005)
, ,[22] On the K–theory of local fields, Ann. of Math. 158 (2003) 1 | DOI
, ,[23] The rigid analytic period mapping, Lubin–Tate space, and stable homotopy theory, Bull. Amer. Math. Soc. 30 (1994) 76 | DOI
, ,[24] Constructions of elements in Picard groups, from: "Topology and representation theory" (editors E M Friedlander, M Mahowald), Contemp. Math. 158, Amer. Math. Soc. (1994) 89 | DOI
, , ,[25] Nilpotence and stable homotopy theory, II, Ann. of Math. 148 (1998) 1 | DOI
, ,[26] Operations and co-operations in Morava E–theory, Homology Homotopy Appl. 6 (2004) 201 | DOI
,[27] Morava K–theories and localisation, 666, Amer. Math. Soc. (1999) | DOI
, ,[28] Equivariant stable homotopy theory, 1213, Springer (1986) | DOI
, , , ,[29] A note on the Thom isomorphism, Proc. Amer. Math. Soc. 82 (1981) 307 | DOI
, ,[30] E∞ ring spaces and E∞ ring spectra, 577, Springer (1977) 268
,[31] What are E∞ ring spaces good for ?, from: "New topological contexts for Galois theory and algebraic geometry" (editors A Baker, B Richter), Geom. Topol. Monogr. 16, Geom. Topol. Publ. (2009) 331 | DOI
,[32] Periodic phenomena in the Adams–Novikov spectral sequence, Ann. of Math. 106 (1977) 469 | DOI
, , ,[33] Hypercohomology spectra and Thomason’s descent theorem, from: "Algebraic K–theory" (editor V P Snaith), Fields Inst. Commun. 16, Amer. Math. Soc. (1997) 221
,[34] Noetherian localisations of categories of cobordism comodules, Ann. of Math. 121 (1985) 1 | DOI
,[35] An introduction to bundle gerbes, from: "The many facets of geometry" (editors O García-Prada, J P Bourguignon, S Salamon), Oxford Univ. Press (2010) 237 | DOI
,[36] The Morava E–theory of Eilenberg–Mac Lane spaces, preprint (2011)
,[37] Annular decomposition of coalgebraic formal variety spectra, preprint (2013)
,[38] The Adams conjecture, Topology 10 (1971) 67 | DOI
,[39] The structure of Morava stabilizer algebras, Invent. Math. 37 (1976) 109 | DOI
,[40] The Morava K–theories of Eilenberg–Mac Lane spaces and the Conner–Floyd conjecture, Amer. J. Math. 102 (1980) 691 | DOI
, ,[41] Twisted Morava K–theory and E–theory,
, ,[42] The stable homotopy of complex projective space, Quart. J. Math. Oxford Ser. 24 (1973) 1 | DOI
,[43] Algebraic cobordism and K–theory, 221, Amer. Math. Soc. (1979) | DOI
,[44] The Bott inverted infinite projective space is homotopy algebraic K–theory, Bull. Lond. Math. Soc. 41 (2009) 281 | DOI
, ,[45] Gross–Hopkins duality, Topology 39 (2000) 1021 | DOI
,[46] Algebraic K–theory and étale cohomology, Ann. Sci. École Norm. Sup. 18 (1985) 437
,Cité par Sources :