Antisymplectic involution and Floer cohomology
Geometry & topology, Tome 21 (2017) no. 1, pp. 1-106.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

The main purpose of the present paper is a study of orientations of the moduli spaces of pseudoholomorphic discs with boundary lying on a real Lagrangian submanifold, ie the fixed point set of an antisymplectic involution τ on a symplectic manifold. We introduce the notion of τ–relative spin structure for an antisymplectic involution τ and study how the orientations on the moduli space behave under the involution τ. We also apply this to the study of Lagrangian Floer theory of real Lagrangian submanifolds. In particular, we study unobstructedness of the τ–fixed point set of symplectic manifolds and, in particular, prove its unobstructedness in the case of Calabi–Yau manifolds. We also do explicit calculation of Floer cohomology of P2n+1 over Λ0,nov, which provides an example whose Floer cohomology is not isomorphic to its classical cohomology. We study Floer cohomology of the diagonal of the square of a symplectic manifold, which leads to a rigorous construction of the quantum Massey product of a symplectic manifold in complete generality.

DOI : 10.2140/gt.2017.21.1
Classification : 53D40, 53D45, 14J33
Keywords: symplectic Geometry, Lagrangian submanifold, pseudoholomorphic curve, Floer cohomology, antisymplectic involution, orientation, quantum cohomology, unobstructed Lagrangian submanifolds

Fukaya, Kenji 1 ; Oh, Yong-Geun 2 ; Ohta, Hiroshi 3 ; Ono, Kaoru 4

1 Simons Center for Geometry and Physics, State University of New York Stony Brook, Stony Brook, NY 11794-3636, United States
2 Center for Geometry and Physics, Institute for Basic Sciences, Pohang, Gyungbuk, 37673, South Korea
3 Graduate School of Mathematics, Nagoya University, Nagoya 464-8602, Japan
4 Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606-8502, Japan
@article{GT_2017_21_1_a0,
     author = {Fukaya, Kenji and Oh, Yong-Geun and Ohta, Hiroshi and Ono, Kaoru},
     title = {Antisymplectic involution and {Floer} cohomology},
     journal = {Geometry & topology},
     pages = {1--106},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2017},
     doi = {10.2140/gt.2017.21.1},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.1/}
}
TY  - JOUR
AU  - Fukaya, Kenji
AU  - Oh, Yong-Geun
AU  - Ohta, Hiroshi
AU  - Ono, Kaoru
TI  - Antisymplectic involution and Floer cohomology
JO  - Geometry & topology
PY  - 2017
SP  - 1
EP  - 106
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.1/
DO  - 10.2140/gt.2017.21.1
ID  - GT_2017_21_1_a0
ER  - 
%0 Journal Article
%A Fukaya, Kenji
%A Oh, Yong-Geun
%A Ohta, Hiroshi
%A Ono, Kaoru
%T Antisymplectic involution and Floer cohomology
%J Geometry & topology
%D 2017
%P 1-106
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.1/
%R 10.2140/gt.2017.21.1
%F GT_2017_21_1_a0
Fukaya, Kenji; Oh, Yong-Geun; Ohta, Hiroshi; Ono, Kaoru. Antisymplectic involution and Floer cohomology. Geometry & topology, Tome 21 (2017) no. 1, pp. 1-106. doi : 10.2140/gt.2017.21.1. http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.1/

[1] D Auroux, Mirror symmetry and T–duality in the complement of an anticanonical divisor, J. Gökova Geom. Topol. 1 (2007) 51

[2] R Castaño-Bernard, D Matessi, J P Solomon, Symmetries of Lagrangian fibrations, Adv. Math. 225 (2010) 1341 | DOI

[3] C H Cho, Holomorphic discs, spin structures, and Floer cohomology of the Clifford torus, Int. Math. Res. Not. 2004 (2004) 1803 | DOI

[4] K Fukaya, Morse homotopy and its quantization, from: "Geometric topology" (editor W H Kazez), AMS/IP Stud. Adv. Math. 2, Amer. Math. Soc. (1997) 409

[5] K Fukaya, Counting pseudo-holomorphic discs in Calabi–Yau 3–folds, Tohoku Math. J. 63 (2011) 697 | DOI

[6] K Fukaya, Y G Oh, H Ohta, K Ono, Lagrangian intersection Floer theory : anomaly and obstruction, preprint (2000)

[7] K Fukaya, Y G Oh, H Ohta, K Ono, Lagrangian intersection Floer theory : anomaly and obstruction, preprint (2006)

[8] K Fukaya, Y G Oh, H Ohta, K Ono, Canonical models of filtered A∞–algebras and Morse complexes, from: "New perspectives and challenges in symplectic field theory" (editors M Abreu, F Lalonde, L Polterovich), CRM Proc. Lecture Notes 49, Amer. Math. Soc. (2009) 201

[9] K Fukaya, Y G Oh, H Ohta, K Ono, Lagrangian intersection Floer theory : anomaly and obstruction, Part I, 46, Amer. Math. Soc. (2009)

[10] K Fukaya, Y G Oh, H Ohta, K Ono, Lagrangian intersection Floer theory : anomaly and obstruction, Part II, 46, Amer. Math. Soc. (2009)

[11] K Fukaya, Y G Oh, H Ohta, K Ono, Lagrangian Floer theory on compact toric manifolds, I, Duke Math. J. 151 (2010) 23 | DOI

[12] K Fukaya, Y G Oh, H Ohta, K Ono, Lagrangian Floer theory on compact toric manifolds, II : bulk deformations, Selecta Math. 17 (2011) 609 | DOI

[13] K Fukaya, Y G Oh, H Ohta, K Ono, Technical details on Kuranishi structure and virtual fundamental chain, preprint (2012)

[14] K Fukaya, Y G Oh, H Ohta, K Ono, Lagrangian Floer theory over integers : spherically positive symplectic manifolds, Pure Appl. Math. Q. 9 (2013) 189 | DOI

[15] K Fukaya, Y G Oh, H Ohta, K Ono, Lagrangian Floer theory and mirror symmetry on compact toric manifolds, 376, Société Mathématique de France (2016)

[16] K Fukaya, K Ono, Arnold conjecture and Gromov–Witten invariant, Topology 38 (1999) 933 | DOI

[17] Y G Oh, Floer cohomology of Lagrangian intersections and pseudo-holomorphic disks, I, II, Comm. Pure Appl. Math. 46 (1993) 949, 995 | DOI

[18] Y G Oh, Floer cohomology, spectral sequences, and the Maslov class of Lagrangian embeddings, Internat. Math. Res. Notices (1996) 305 | DOI

[19] H Ohta, Obstruction to and deformation of Lagrangian intersection Floer cohomology, from: "Symplectic geometry and mirror symmetry" (editors K Fukaya, Y G Oh, K Ono, G Tian), World Sci. Publ. (2001) 281 | DOI

[20] R Pandharipande, J Solomon, J Walcher, Disk enumeration on the quintic 3–fold, J. Amer. Math. Soc. 21 (2008) 1169 | DOI

[21] V De Silva, Products in the symplectic Floer homology of Lagrangian intersections, PhD thesis, Oxford University (1988)

[22] J P Solomon, Intersection theory on the moduli space of holomorphic curves with Lagrangian boundary conditions, PhD thesis, Massachusetts Institute of Technology (2006)

[23] J Walcher, Opening mirror symmetry on the quintic, Comm. Math. Phys. 276 (2007) 671 | DOI

[24] J Y Welschinger, Invariants of real symplectic 4–manifolds and lower bounds in real enumerative geometry, Invent. Math. 162 (2005) 195 | DOI

Cité par Sources :