Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
The main purpose of the present paper is a study of orientations of the moduli spaces of pseudoholomorphic discs with boundary lying on a real Lagrangian submanifold, ie the fixed point set of an antisymplectic involution on a symplectic manifold. We introduce the notion of –relative spin structure for an antisymplectic involution and study how the orientations on the moduli space behave under the involution . We also apply this to the study of Lagrangian Floer theory of real Lagrangian submanifolds. In particular, we study unobstructedness of the –fixed point set of symplectic manifolds and, in particular, prove its unobstructedness in the case of Calabi–Yau manifolds. We also do explicit calculation of Floer cohomology of over , which provides an example whose Floer cohomology is not isomorphic to its classical cohomology. We study Floer cohomology of the diagonal of the square of a symplectic manifold, which leads to a rigorous construction of the quantum Massey product of a symplectic manifold in complete generality.
Fukaya, Kenji 1 ; Oh, Yong-Geun 2 ; Ohta, Hiroshi 3 ; Ono, Kaoru 4
@article{GT_2017_21_1_a0, author = {Fukaya, Kenji and Oh, Yong-Geun and Ohta, Hiroshi and Ono, Kaoru}, title = {Antisymplectic involution and {Floer} cohomology}, journal = {Geometry & topology}, pages = {1--106}, publisher = {mathdoc}, volume = {21}, number = {1}, year = {2017}, doi = {10.2140/gt.2017.21.1}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.1/} }
TY - JOUR AU - Fukaya, Kenji AU - Oh, Yong-Geun AU - Ohta, Hiroshi AU - Ono, Kaoru TI - Antisymplectic involution and Floer cohomology JO - Geometry & topology PY - 2017 SP - 1 EP - 106 VL - 21 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.1/ DO - 10.2140/gt.2017.21.1 ID - GT_2017_21_1_a0 ER -
Fukaya, Kenji; Oh, Yong-Geun; Ohta, Hiroshi; Ono, Kaoru. Antisymplectic involution and Floer cohomology. Geometry & topology, Tome 21 (2017) no. 1, pp. 1-106. doi : 10.2140/gt.2017.21.1. http://geodesic.mathdoc.fr/articles/10.2140/gt.2017.21.1/
[1] Mirror symmetry and T–duality in the complement of an anticanonical divisor, J. Gökova Geom. Topol. 1 (2007) 51
,[2] Symmetries of Lagrangian fibrations, Adv. Math. 225 (2010) 1341 | DOI
, , ,[3] Holomorphic discs, spin structures, and Floer cohomology of the Clifford torus, Int. Math. Res. Not. 2004 (2004) 1803 | DOI
,[4] Morse homotopy and its quantization, from: "Geometric topology" (editor W H Kazez), AMS/IP Stud. Adv. Math. 2, Amer. Math. Soc. (1997) 409
,[5] Counting pseudo-holomorphic discs in Calabi–Yau 3–folds, Tohoku Math. J. 63 (2011) 697 | DOI
,[6] Lagrangian intersection Floer theory : anomaly and obstruction, preprint (2000)
, , , ,[7] Lagrangian intersection Floer theory : anomaly and obstruction, preprint (2006)
, , , ,[8] Canonical models of filtered A∞–algebras and Morse complexes, from: "New perspectives and challenges in symplectic field theory" (editors M Abreu, F Lalonde, L Polterovich), CRM Proc. Lecture Notes 49, Amer. Math. Soc. (2009) 201
, , , ,[9] Lagrangian intersection Floer theory : anomaly and obstruction, Part I, 46, Amer. Math. Soc. (2009)
, , , ,[10] Lagrangian intersection Floer theory : anomaly and obstruction, Part II, 46, Amer. Math. Soc. (2009)
, , , ,[11] Lagrangian Floer theory on compact toric manifolds, I, Duke Math. J. 151 (2010) 23 | DOI
, , , ,[12] Lagrangian Floer theory on compact toric manifolds, II : bulk deformations, Selecta Math. 17 (2011) 609 | DOI
, , , ,[13] Technical details on Kuranishi structure and virtual fundamental chain, preprint (2012)
, , , ,[14] Lagrangian Floer theory over integers : spherically positive symplectic manifolds, Pure Appl. Math. Q. 9 (2013) 189 | DOI
, , , ,[15] Lagrangian Floer theory and mirror symmetry on compact toric manifolds, 376, Société Mathématique de France (2016)
, , , ,[16] Arnold conjecture and Gromov–Witten invariant, Topology 38 (1999) 933 | DOI
, ,[17] Floer cohomology of Lagrangian intersections and pseudo-holomorphic disks, I, II, Comm. Pure Appl. Math. 46 (1993) 949, 995 | DOI
,[18] Floer cohomology, spectral sequences, and the Maslov class of Lagrangian embeddings, Internat. Math. Res. Notices (1996) 305 | DOI
,[19] Obstruction to and deformation of Lagrangian intersection Floer cohomology, from: "Symplectic geometry and mirror symmetry" (editors K Fukaya, Y G Oh, K Ono, G Tian), World Sci. Publ. (2001) 281 | DOI
,[20] Disk enumeration on the quintic 3–fold, J. Amer. Math. Soc. 21 (2008) 1169 | DOI
, , ,[21] Products in the symplectic Floer homology of Lagrangian intersections, PhD thesis, Oxford University (1988)
,[22] Intersection theory on the moduli space of holomorphic curves with Lagrangian boundary conditions, PhD thesis, Massachusetts Institute of Technology (2006)
,[23] Opening mirror symmetry on the quintic, Comm. Math. Phys. 276 (2007) 671 | DOI
,[24] Invariants of real symplectic 4–manifolds and lower bounds in real enumerative geometry, Invent. Math. 162 (2005) 195 | DOI
,Cité par Sources :