Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We study the problem of finding generators for the fundamental group of a space of the following sort: one removes a family of complex hyperplanes from , or complex hyperbolic space , or the Hermitian symmetric space for , and then takes the quotient by a discrete group . The classical example is the braid group, but there are many similar “braid-like” groups that arise in topology and algebraic geometry. Our main result is that if contains reflections in the hyperplanes nearest the basepoint, and these reflections satisfy a certain property, then is generated by the analogues of the generators of the classical braid group. We apply this to obtain generators for in a particular intricate example in . The interest in this example comes from a conjectured relationship between this braid-like group and the monster simple group , that gives geometric meaning to the generators and relations in the Conway–Simons presentation of . We also suggest some other applications of our machinery.
Allcock, Daniel 1 ; Basak, Tathagata 2
@article{GT_2016_20_2_a2, author = {Allcock, Daniel and Basak, Tathagata}, title = {Geometric generators for braid-like groups}, journal = {Geometry & topology}, pages = {747--778}, publisher = {mathdoc}, volume = {20}, number = {2}, year = {2016}, doi = {10.2140/gt.2016.20.747}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2016.20.747/} }
TY - JOUR AU - Allcock, Daniel AU - Basak, Tathagata TI - Geometric generators for braid-like groups JO - Geometry & topology PY - 2016 SP - 747 EP - 778 VL - 20 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2016.20.747/ DO - 10.2140/gt.2016.20.747 ID - GT_2016_20_2_a2 ER -
Allcock, Daniel; Basak, Tathagata. Geometric generators for braid-like groups. Geometry & topology, Tome 20 (2016) no. 2, pp. 747-778. doi : 10.2140/gt.2016.20.747. http://geodesic.mathdoc.fr/articles/10.2140/gt.2016.20.747/
[1] The Leech lattice and complex hyperbolic reflections, Invent. Math. 140 (2000) 283
,[2] New complex- and quaternion-hyperbolic reflection groups, Duke Math. J. 103 (2000) 303
,[3] The period lattice for Enriques surfaces, Math. Ann. 317 (2000) 483
,[4] A monstrous proposal, from: "Groups and symmetries" (editors J Harnad, P Winternitz), CRM Proc. Lecture Notes 47, Amer. Math. Soc. (2009) 17
,[5] On the Y 555 complex reflection group, J. Algebra 322 (2009) 1454
,[6] Generators for a complex hyperbolic braid group
, ,[7] The complex hyperbolic geometry of the moduli space of cubic surfaces, J. Algebraic Geom. 11 (2002) 659
, , ,[8] The moduli space of cubic threefolds as a ball quotient, Amer. Math. Soc. (2011)
, , ,[9] The complex Lorentzian Leech lattice and the bimonster, J. Algebra 309 (2007) 32
,[10] The complex Lorentzian Leech lattice and the bimonster, II, Trans. Amer. Math. Soc. 368 (2016) 4171
,[11] Finite complex reflection arrangements are K(π,1), Ann. of Math. 181 (2015) 809
,[12] Metric spaces of non-positive curvature, 319, Springer (1999)
, ,[13] Die Fundamentalgruppe des Raumes der regulären Orbits einer endlichen komplexen Spiegelungsgruppe, Invent. Math. 12 (1971) 57
,[14] A group of order 8,315,553,613,086,720,000, Bull. London Math. Soc. 1 (1969) 79
,[15] The covering radius of the Leech lattice, Proc. Roy. Soc. London Ser. A 380 (1982) 261
, , ,[16] 26 implies the Bimonster, J. Algebra 235 (2001) 805
, ,[17] Finite groups generated by unitary reflections, Abh. Math. Sem. Univ. Hamburg 31 (1967) 125
,[18] Mirror symmetry for lattice polarized K3 surfaces, J. Math. Sci. 81 (1996) 2599
,[19] The braid groups, Math. Scand. 10 (1962) 119
, ,[20] Riemannian geometry, Springer (1987)
, , ,[21] Complex hyperbolic geometry, Clarendon Press (1999)
,[22] Stratified Morse theory, 14, Springer (1988)
, ,[23] The Allcock ball quotient, preprint (2013)
,[24] The moduli space of rational elliptic surfaces, from: "Algebraic geometry 2000, Azumino" (editors S Usui, M Green, L Illusie, K Kato, E Looijenga, S Mukai, S Saito), Adv. Stud. Pure Math. 36, Math. Soc. Japan (2002) 185
, ,[25] Two Lorentzian lattices, preprint (2014)
, ,[26] Hyperbolic manifolds and discrete groups, 183, Birkhäuser (2001)
,[27] A complex hyperbolic structure for the moduli space of curves of genus three, J. Reine Angew. Math. 525 (2000) 219
,[28] The moduli space of curves of genus 4 and Deligne–Mostow’s complex reflection groups, from: "Algebraic geometry 2000, Azumino" (editors S Usui, M Green, L Illusie, K Kato, E Looijenga, S Mukai, S Saito), Adv. Stud. Pure Math. 36, Math. Soc. Japan (2002) 383
,[29] On the semi-universal deformation of a simple-elliptic hypersurface singularity : Unimodularity, Topology 16 (1977) 257
,[30] The smoothing components of a triangle singularity, II, Math. Ann. 269 (1984) 357
,[31] Artin groups and the fundamental groups of some moduli spaces, J. Topol. 1 (2008) 187
,[32] The period map for cubic fourfolds, Invent. Math. 177 (2009) 213
,[33] The period map for cubic threefolds, Compos. Math. 143 (2007) 1037
, ,[34] Periods of Enriques surfaces, Math. Ann. 270 (1985) 201
,[35] Finite groups of automorphisms of Kählerian K3 surfaces, Trudy Moskov. Mat. Obshch. 38 (1979) 75
,[36] Foundations of hyperbolic manifolds, 149, Springer (1994)
,[37] Finite unitary reflection groups, Canadian J. Math. 6 (1954) 274
, ,[38] The complex Leech lattice and maximal subgroups of the Suzuki group, J. Algebra 84 (1983) 151
,Cité par Sources :