Asymptotic H–Plateau problem in ℍ3
Geometry & topology, Tome 20 (2016) no. 1, pp. 613-627.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We show that for any Jordan curve Γ in S2(3) with at least one smooth point, there exists an embedded H–plane PH in 3 with PH = Γ for any H [0,1).

DOI : 10.2140/gt.2016.20.613
Classification : 53A10
Keywords: asymptotic Plateau problem, constant mean curvature, $H$–surfaces, hyperbolic space

Coskunuzer, Baris 1

1 Massachusetts Institute of Technology, Mathematics Department, Cambridge, MA 02139, USA, Department of Mathematics, Koç University, Istanbul 34450, Turkey
@article{GT_2016_20_1_a11,
     author = {Coskunuzer, Baris},
     title = {Asymptotic {H{\textendash}Plateau} problem in {\ensuremath{\mathbb{H}}3}},
     journal = {Geometry & topology},
     pages = {613--627},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2016},
     doi = {10.2140/gt.2016.20.613},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2016.20.613/}
}
TY  - JOUR
AU  - Coskunuzer, Baris
TI  - Asymptotic H–Plateau problem in ℍ3
JO  - Geometry & topology
PY  - 2016
SP  - 613
EP  - 627
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2016.20.613/
DO  - 10.2140/gt.2016.20.613
ID  - GT_2016_20_1_a11
ER  - 
%0 Journal Article
%A Coskunuzer, Baris
%T Asymptotic H–Plateau problem in ℍ3
%J Geometry & topology
%D 2016
%P 613-627
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2016.20.613/
%R 10.2140/gt.2016.20.613
%F GT_2016_20_1_a11
Coskunuzer, Baris. Asymptotic H–Plateau problem in ℍ3. Geometry & topology, Tome 20 (2016) no. 1, pp. 613-627. doi : 10.2140/gt.2016.20.613. http://geodesic.mathdoc.fr/articles/10.2140/gt.2016.20.613/

[1] M T Anderson, Complete minimal varieties in hyperbolic space, Invent. Math. 69 (1982) 477

[2] M T Anderson, Complete minimal hypersurfaces in hyperbolic n–manifolds, Comment. Math. Helv. 58 (1983) 264

[3] J Bernstein, G Tinaglia, Topological type of limit laminations of embedded minimal disks, J. Differential Geom. 102 (2016) 1

[4] B Coskunuzer, Minimizing constant mean curvature hypersurfaces in hyperbolic space, Geom. Dedicata 118 (2006) 157

[5] B Coskunuzer, Least area planes in hyperbolic 3–space are properly embedded, Indiana Univ. Math. J. 58 (2009) 381

[6] B Coskunuzer, Foliations of hyperbolic space by constant mean curvature hypersurfaces, Int. Math. Res. Not. 2010 (2010) 1417

[7] B Coskunuzer, Asymptotic Plateau problem : a survey, from: "Proceedings of the Gökova Geometry–Topology Conference 2013" (editors S Akbulut, D Auroux, T Önder), GGT (2014) 120

[8] B Coskunuzer, Embeddedness of the solutions to the H–Plateau problem, preprint (2015)

[9] B Coskunuzer, W H Meeks Iii, G Tinaglia, Non-properly embedded H–planes in hyperbolic 3–space, preprint (2015)

[10] T Cuschieri, Complete noncompact CMC surfaces in hyperbolic 3–space, PhD thesis, University of Warwick (2009)

[11] D B A Epstein, A Marden, Convex hulls in hyperbolic space, a theorem of Sullivan, and measured pleated surfaces, from: "Analytical and geometric aspects of hyperbolic space" (editor D B A Epstein), London Math. Soc. Lecture Note Ser. 111, Cambridge Univ. Press (1987) 113

[12] D Gabai, On the geometric and topological rigidity of hyperbolic 3–manifolds, J. Amer. Math. Soc. 10 (1997) 37

[13] B Guan, J Spruck, Hypersurfaces of constant mean curvature in hyperbolic space with prescribed asymptotic boundary at infinity, Amer. J. Math. 122 (2000) 1039

[14] R D Gulliver Ii, The Plateau problem for surfaces of prescribed mean curvature in a Riemannian manifold, J. Differential Geometry 8 (1973) 317

[15] W H Meeks Iii, S T Yau, The classical Plateau problem and the topology of three-dimensional manifolds : The embedding of the solution given by Douglas–Morrey and an analytic proof of Dehn’s lemma, Topology 21 (1982) 409

[16] W H Meeks Iii, S T Yau, The existence of embedded minimal surfaces and the problem of uniqueness, Math. Z. 179 (1982) 151

[17] B Nelli, J Spruck, On the existence and uniqueness of constant mean curvature hypersurfaces in hyperbolic space, from: "Geometric analysis and the calculus of variations" (editor J Jost), Int. Press (1996) 253

[18] J Ripoll, M Telichevesky, On the asymptotic Plateau problem for CMC hypersurfaces in hyperbolic space, preprint (2015)

[19] J Ripoll, F Tomi, Complete minimal discs in Hadamard manifolds, preprint (2015)

[20] R Schoen, L Simon, Regularity of simply connected surfaces with quasiconformal Gauss map, from: "Seminar on minimal submanifolds" (editor E Bombieri), Ann. of Math. Stud. 103, Princeton Univ. Press (1983) 127

[21] Y Tonegawa, Existence and regularity of constant mean curvature hypersurfaces in hyperbolic space, Math. Z. 221 (1996) 591

[22] B Wang, Least area spherical catenoids in hyperbolic three-dimensional space, preprint (2015)

Cité par Sources :