Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Using the invariant developed by E Artal, V Florens and the author, we differentiate four arrangements with the same combinatorial information but in different deformation classes. From these arrangements, we construct four other arrangements such that there is no orientation-preserving homeomorphism between them. Furthermore, some pairs of arrangements among this 4–tuple form new arithmetic Zariski pairs, ie a pair of arrangements conjugate in a number field with the same combinatorial information but with different embedding topology in .
Guerville-Ballé, Benoît 1
@article{GT_2016_20_1_a9, author = {Guerville-Ball\'e, Beno{\^\i}t}, title = {An arithmetic {Zariski} 4{\textendash}tuple of twelve lines}, journal = {Geometry & topology}, pages = {537--553}, publisher = {mathdoc}, volume = {20}, number = {1}, year = {2016}, doi = {10.2140/gt.2016.20.537}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2016.20.537/} }
Guerville-Ballé, Benoît. An arithmetic Zariski 4–tuple of twelve lines. Geometry & topology, Tome 20 (2016) no. 1, pp. 537-553. doi : 10.2140/gt.2016.20.537. http://geodesic.mathdoc.fr/articles/10.2140/gt.2016.20.537/
[1] Sur les couples de Zariski, J. Algebraic Geom. 3 (1994) 223
,[2] Topology of arrangements and position of singularities, Ann. Fac. Sci. Toulouse Math. 23 (2014) 223
,[3] Topology and combinatorics of real line arrangements, Compos. Math. 141 (2005) 1578
, , , ,[4] Invariants of combinatorial line arrangements and Rybnikov’s example, from: "Singularity theory and its applications" (editors S Izumiya, G Ishikawa, H Tokunaga, I Shimada, T Sano), Adv. Stud. Pure Math. 43, Math. Soc. Japan (2006) 1
, , , ,[5] A survey on Zariski pairs, from: "Algebraic geometry in East Asia" (editors K Konno, V Nguyen-Khac), Adv. Stud. Pure Math. 50, Math. Soc. Japan (2008) 1
, , ,[6] A topological invariant of line arrangements, preprint (2014)
, , ,[7] The fundamental group of the complement of an arrangement of complex hyperplanes, Topology 31 (1992) 757
,[8] Topology of septics with the set of singularities B4,4 ⊕ 2A3 ⊕ 5A1 and π1–equivalent weak Zariski pairs, Topology Appl. 159 (2012) 2592
, , ,[9] The braid monodromy of plane algebraic curves and hyperplane arrangements, Comment. Math. Helv. 72 (1997) 285
, ,[10] On deformations of singular plane sextics, J. Algebraic Geom. 17 (2008) 101
,[11] Pencil type line arrangements of low degree: classification and monodromy, preprint (2014)
, , ,[12] On complex line arrangements and their boundary manifolds, Math. Proc. Cambridge Philos. Soc. 159 (2015) 189
, , ,[13] Topological invariants of line arrangements, PhD thesis, Université de Pau et des Pays de l’Adour and Universidad de Zaragoza (2013)
,[14] Wiring diagram computations, Sage notebook (2014)
,[15] Some interpretations of abstract linear dependence in terms of projective geometry, Amer. J. Math. 58 (1936) 236
,[16] Two transforms of plane curves and their fundamental groups, J. Math. Sci. Univ. Tokyo 3 (1996) 399
,[17] Arrangements of hyperplanes, 300, Springer (1992)
, ,[18] On the fundamental group of the complement of a complex hyperplane arrangement, Funktsional. Anal. i Prilozhen. 45 (2011) 71
,[19] Fundamental groups of complements to singular plane curves, Amer. J. Math. 119 (1997) 127
,[20] Sage mathematics software (version 6.1) (2014)
,[21] On the problem of existence of algebraic functions of two variables possessing a given branch curve, Amer. J. Math. 51 (1929) 305
,[22] On the irregularity of cyclic multiple planes, Ann. of Math. 32 (1931) 485
,[23] On the Poincaré group of rational plane curves, Amer. J. Math. 58 (1936) 607
,Cité par Sources :