Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We partially confirm a conjecture of Donaldson relating the greatest Ricci lower bound to the existence of conical Kähler–Einstein metrics on a Fano manifold . In particular, if is a smooth divisor and the Mabuchi –energy is bounded below, then there exists a unique conical Kähler–Einstein metric satisfying for any . We also construct unique conical toric Kähler–Einstein metrics with and a unique effective –divisor for all toric Fano manifolds. Finally we prove a Miyaoka–Yau-type inequality for Fano manifolds with .
Song, Jian 1 ; Wang, Xiaowei 2
@article{GT_2016_20_1_a1, author = {Song, Jian and Wang, Xiaowei}, title = {The greatest {Ricci} lower bound, conical {Einstein} metrics and {Chern} number inequality}, journal = {Geometry & topology}, pages = {49--102}, publisher = {mathdoc}, volume = {20}, number = {1}, year = {2016}, doi = {10.2140/gt.2016.20.49}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2016.20.49/} }
TY - JOUR AU - Song, Jian AU - Wang, Xiaowei TI - The greatest Ricci lower bound, conical Einstein metrics and Chern number inequality JO - Geometry & topology PY - 2016 SP - 49 EP - 102 VL - 20 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2016.20.49/ DO - 10.2140/gt.2016.20.49 ID - GT_2016_20_1_a1 ER -
%0 Journal Article %A Song, Jian %A Wang, Xiaowei %T The greatest Ricci lower bound, conical Einstein metrics and Chern number inequality %J Geometry & topology %D 2016 %P 49-102 %V 20 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2016.20.49/ %R 10.2140/gt.2016.20.49 %F GT_2016_20_1_a1
Song, Jian; Wang, Xiaowei. The greatest Ricci lower bound, conical Einstein metrics and Chern number inequality. Geometry & topology, Tome 20 (2016) no. 1, pp. 49-102. doi : 10.2140/gt.2016.20.49. http://geodesic.mathdoc.fr/articles/10.2140/gt.2016.20.49/
[1] Curvature, cones and characteristic numbers, Math. Proc. Cambridge Philos. Soc. 155 (2013) 13
, ,[2] A thermodynamical formalism for Monge–Ampère equations, Moser–Trudinger inequalities and Kähler–Einstein metrics, (2012)
,[3] K–polystability of Q–Fano varieties admitting Kähler–Einstein metrics, preprint (2015)
,[4] A variational approach to complex Monge–Ampère equations, preprint (2009)
, , , ,[5] Ricci flat Kähler metrics with edge singularities, Int. Math. Res. Not. 2013 (2013) 5727
,[6] Kähler–Einstein metrics on Fano manifolds, II : Limits with cone angle less than 2π, J. Amer. Math. Soc. 28 (2015) 199
, , ,[7] Connecting toric manifolds by conical Kähler–Einstein metrics, preprint (2013)
, , , ,[8] On Tian’s invariant and log canonical thresholds, (2008)
,[9] Remarks on the existence problem of positive Kähler–Einstein metrics, Math. Ann. 282 (1988) 463
,[10] Scalar curvature and stability of toric varieties, J. Differential Geom. 62 (2002) 289
,[11] Extremal metrics on toric surfaces: a continuity method, J. Differential Geom. 79 (2008) 389
,[12] Kähler geometry on toric manifolds, and some other manifolds with large symmetry, from: "Handbook of geometric analysis" (editors L Ji, P Li, R Schoen, L Simon), Adv. Lect. Math. 7, Int. Press (2008) 29
,[13] Kähler metrics with cone singularities along a divisor, from: "Essays in mathematics and its applications" (editors P M Pardalos, T M Rassias), Springer (2012) 49
,[14] Singular Kähler–Einstein metrics, J. Amer. Math. Soc. 22 (2009) 607
, , ,[15] Kähler structures on toric varieties, J. Differential Geom. 40 (1994) 285
,[16] Kähler–Einstein metrics with edge singularities, Ann. Math. 183 (2016) 95
, , ,[17] The complex Monge–Ampère equation, Acta Math. 180 (1998) 69
,[18] Greatest lower bounds on Ricci curvature for toric Fano manifolds, Adv. Math. 226 (2011) 4921
,[19] On the limit behavior of metrics in the continuity method for the Kähler–Einstein problem on a toric Fano manifold, Compos. Math. 148 (2012) 1985
,[20] Remarks on logarithmic K–stability, Commun. Contemp. Math. 17 (2015) 1450020, 17
,[21] Conical Kähler–Einstein metrics revisited, Comm. Math. Phys. 331 (2014) 927
, ,[22] On the lower bound of the K–energy and F–functional, Osaka J. Math. 45 (2008) 253
,[23] Liouville equation and spherical convex polytopes, Proc. Amer. Math. Soc. 116 (1992) 1119
, ,[24] K–energy maps integrating Futaki invariants, Tohoku Math. J. 38 (1986) 575
,[25] Point singularities and conformal metrics on Riemann surfaces, Proc. Amer. Math. Soc. 103 (1988) 222
,[26] On the Chern numbers of surfaces of general type, Invent. Math. 42 (1977) 225
,[27] On convergence of the Kähler–Ricci flow, Comm. Anal. Geom. 19 (2011) 887
, ,[28] Testing log K–stability by blowing up formalism, Ann. Fac. Sci. Toulouse Math. 24 (2015) 505
, ,[29] Multiplier ideal sheaves and the Kähler–Ricci flow, Comm. Anal. Geom. 15 (2007) 613
, , ,[30] The Moser–Trudinger inequality on Kähler–Einstein manifolds, Amer. J. Math. 130 (2008) 1067
, , , ,[31] On energy functionals, Kähler–Einstein metrics, and the Moser–Trudinger–Onofri neighborhood, J. Funct. Anal. 255 (2008) 2641
,[32] The α–invariant on certain surfaces with symmetry groups, Trans. Amer. Math. Soc. 357 (2005) 45
,[33] Note on K–stability of pairs, Math. Ann. 355 (2013) 259
,[34] Greatest lower bounds on the Ricci curvature of Fano manifolds, Compos. Math. 147 (2011) 319
,[35] On Kähler–Einstein metrics on certain Kähler manifolds with C1(M) > 0, Invent. Math. 89 (1987) 225
,[36] On stability of the tangent bundles of Fano varieties, Internat. J. Math. 3 (1992) 401
,[37] Kähler–Einstein metrics on algebraic manifolds, from: "Transcendental methods in algebraic geometry", Lecture Notes in Math. 1646, Springer (1996) 143
,[38] Kähler–Einstein metrics with positive scalar curvature, Invent. Math. 130 (1997) 1
,[39] Canonical metrics in Kähler geometry, Birkhäuser (2000)
,[40] On the structure of almost Einstein manifolds, J. Amer. Math. Soc. 28 (2015) 1169
, ,[41] Existence of Kähler–Einstein metrics on complete Kähler manifolds and their applications to algebraic geometry, from: "Mathematical aspects of string theory" (editor S T Yau), Adv. Ser. Math. Phys. 1, World Scientific (1987) 574
, ,[42] A nonlinear inequality of Moser–Trudinger type, Calc. Var. Partial Differential Equations 10 (2000) 349
, ,[43] Prescribing curvature on compact surfaces with conical singularities, Trans. Amer. Math. Soc. 324 (1991) 793
,[44] Stability of tangent bundles of minimal algebraic varieties, Topology 27 (1988) 429
,[45] Kähler–Ricci solitons on toric manifolds with positive first Chern class, Adv. Math. 188 (2004) 87
, ,[46] Calabi’s conjecture and some new results in algebraic geometry, Proc. Nat. Acad. Sci. USA 74 (1977) 1798
,[47] On the Ricci curvature of a compact Kähler manifold and the complex Monge–Ampère equation, I, Comm. Pure Appl. Math. 31 (1978) 339
,[48] Open problems in geometry, from: "Differential geometry: partial differential equations on manifolds" (editor R Greene), Proc. Sympos. Pure Math. 54, Amer. Math. Soc. (1993) 1
,[49] Miyaoka–Yau inequality for minimal projective manifolds of general type, Proc. Amer. Math. Soc. 137 (2009) 2749
,[50] On degenerate Monge–Ampère equations over closed Kähler manifolds, Int. Math. Res. Not. 2006 (2006)
,Cité par Sources :