Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We show that a small perturbation of the boundary distance function of a simple Finsler metric on the –disc is also the boundary distance function of some Finsler metric. (Simple metrics form an open class containing all flat metrics.) The lens map is a map that sends the exit vector to the entry vector as a geodesic crosses the disc. We show that a small perturbation of a lens map of a simple Finsler metric is in its turn the lens map of some Finsler metric. We use this result to construct a smooth perturbation of the metric on the standard –dimensional sphere to produce positive metric entropy of the geodesic flow. Furthermore, this flow exhibits local generation of metric entropy; that is, positive entropy is generated in arbitrarily small tubes around one trajectory.
Burago, Dmitri 1 ; Ivanov, Sergei 2
@article{GT_2016_20_1_a7, author = {Burago, Dmitri and Ivanov, Sergei}, title = {Boundary distance, lens maps and entropy of geodesic flows of {Finsler} metrics}, journal = {Geometry & topology}, pages = {469--490}, publisher = {mathdoc}, volume = {20}, number = {1}, year = {2016}, doi = {10.2140/gt.2016.20.469}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2016.20.469/} }
TY - JOUR AU - Burago, Dmitri AU - Ivanov, Sergei TI - Boundary distance, lens maps and entropy of geodesic flows of Finsler metrics JO - Geometry & topology PY - 2016 SP - 469 EP - 490 VL - 20 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2016.20.469/ DO - 10.2140/gt.2016.20.469 ID - GT_2016_20_1_a7 ER -
%0 Journal Article %A Burago, Dmitri %A Ivanov, Sergei %T Boundary distance, lens maps and entropy of geodesic flows of Finsler metrics %J Geometry & topology %D 2016 %P 469-490 %V 20 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2016.20.469/ %R 10.2140/gt.2016.20.469 %F GT_2016_20_1_a7
Burago, Dmitri; Ivanov, Sergei. Boundary distance, lens maps and entropy of geodesic flows of Finsler metrics. Geometry & topology, Tome 20 (2016) no. 1, pp. 469-490. doi : 10.2140/gt.2016.20.469. http://geodesic.mathdoc.fr/articles/10.2140/gt.2016.20.469/
[1] On two problems of Loewner, J. London Math. Soc. 27 (1952) 141
,[2] Entropy-expansive maps, Trans. Amer. Math. Soc. 164 (1972) 323
,[3] A new approach to the calculation of the entropy of the geodesic flow and of related dynamical systems, Dokl. Akad. Nauk SSSR 299 (1988) 1041
,[4] Local monotonicity of Riemannian and Finsler volume with respect to boundary distances, Geom. Dedicata 164 (2013) 83
,[5] A surface with positive curvature and positive topological entropy, J. Differential Geom. 39 (1994) 229
, ,[6] Continuity properties of entropy, Ann. of Math. 129 (1989) 215
,[7] Real analytic convex surfaces with positive topological entropy and rigid body dynamics, Manuscripta Math. 78 (1993) 397
,Cité par Sources :