Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
The invariant measured foliations of a pseudo-Anosov homeomorphism induce a natural (singular) Sol structure on mapping tori of surfaces with pseudo-Anosov monodromy. We show that when the pseudo-Anosov has orientable foliations and does not have 1 as an eigenvalue of the induced cohomology action on the closed surface, then the Sol structure can be deformed to nearby cone hyperbolic structures, in the sense of projective structures. The cone angles can be chosen to be decreasing from multiples of .
Kozai, Kenji 1
@article{GT_2016_20_1_a6, author = {Kozai, Kenji}, title = {Hyperbolic structures from {Sol} on {pseudo-Anosov} mapping tori}, journal = {Geometry & topology}, pages = {437--468}, publisher = {mathdoc}, volume = {20}, number = {1}, year = {2016}, doi = {10.2140/gt.2016.20.437}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2016.20.437/} }
Kozai, Kenji. Hyperbolic structures from Sol on pseudo-Anosov mapping tori. Geometry & topology, Tome 20 (2016) no. 1, pp. 437-468. doi : 10.2140/gt.2016.20.437. http://geodesic.mathdoc.fr/articles/10.2140/gt.2016.20.437/
[1] Basic Lie theory, World Scientific (2007)
, ,[2] Involutions on knot groups and varieties of representations in a Lie group, J. Knot Theory Ramifications 11 (2002) 81
, ,[3] Geometric structures on 3–manifolds, from: "Handbook of geometric topology" (editors R J Daverman, R B Sher), North-Holland (2002) 93
,[4] A geometric transition from hyperbolic to anti-de Sitter geometry, Geom. Topol. 17 (2013) 3077
,[5] Sur les espaces localement homogenes, Enseign. Math. 35 (1936) 317
,[6] A primer on mapping class groups, 49, Princeton Univ. Press (2012)
, ,[7] Thurston’s work on surfaces, 48, Princeton Univ. Press (2012)
, , ,[8] Deforming representations of knot groups in SU(2), Comment. Math. Helv. 66 (1991) 340
, ,[9] Geometric structures on manifolds and varieties of representations, from: "Geometry of group representations" (editors W M Goldman, A R Magid), Contemp. Math. 74, Amer. Math. Soc. (1988) 169
,[10] Deforming abelian SU(2)–representations of knot groups, Comment. Math. Helv. 73 (1998) 480
, ,[11] Deformations of reducible representations of 3–manifold groups into PSL2(C), Algebr. Geom. Topol. 5 (2005) 965
, ,[12] Regenerating singular hyperbolic structures from Sol, J. Differential Geom. 59 (2001) 439
, , ,[13] Deformations of reducible representations of 3-manifold groups into SL2(C), J. Reine Angew. Math. 530 (2001) 191
, , ,[14] Degeneration and regeneration of geometric structures on 3–manifolds, PhD thesis, Princeton University (1986)
,[15] Rigidity of hyperbolic cone-manifolds and hyperbolic Dehn surgery, J. Differential Geom. 48 (1998) 1
, ,[16] Varieties of representations of finitely generated groups, 336, Amer. Math. Soc. (1985)
, ,[17] Billiards and Teichmüller curves on Hilbert modular surfaces, J. Amer. Math. Soc. 16 (2003) 857
,[18] A construction of pseudo-Anosov homeomorphisms, Trans. Amer. Math. Soc. 310 (1988) 179
,[19] Bounds on least dilatations, Proc. Amer. Math. Soc. 113 (1991) 443
,[20] Torsion de Reidemeister pour les variétés hyperboliques, 612, Amer. Math. Soc. (1997)
,[21] The geometry and topology of three-manifolds, lecture notes (1979)
,[22] Hyperbolic structures on 3–manifolds, II : Surface groups and 3–manifolds which fiber over the circle, preprint (1998)
,[23] Remarks on the cohomology of groups, Ann. of Math. 80 (1964) 149
,Cité par Sources :