Hyperbolic structures from Sol on pseudo-Anosov mapping tori
Geometry & topology, Tome 20 (2016) no. 1, pp. 437-468.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

The invariant measured foliations of a pseudo-Anosov homeomorphism induce a natural (singular) Sol structure on mapping tori of surfaces with pseudo-Anosov monodromy. We show that when the pseudo-Anosov ϕ: S S has orientable foliations and does not have 1 as an eigenvalue of the induced cohomology action on the closed surface, then the Sol structure can be deformed to nearby cone hyperbolic structures, in the sense of projective structures. The cone angles can be chosen to be decreasing from multiples of 2π.

DOI : 10.2140/gt.2016.20.437
Classification : 57M50, 57R20, 55N25
Keywords: Sol, fibered $3$–manifold, projective structure, regeneration

Kozai, Kenji 1

1 Department of Mathematics, University of California, Berkeley, 970 Evans Hall #3840, Berkeley, CA 94720-3840, USA
@article{GT_2016_20_1_a6,
     author = {Kozai, Kenji},
     title = {Hyperbolic structures from {Sol} on {pseudo-Anosov} mapping tori},
     journal = {Geometry & topology},
     pages = {437--468},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2016},
     doi = {10.2140/gt.2016.20.437},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2016.20.437/}
}
TY  - JOUR
AU  - Kozai, Kenji
TI  - Hyperbolic structures from Sol on pseudo-Anosov mapping tori
JO  - Geometry & topology
PY  - 2016
SP  - 437
EP  - 468
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2016.20.437/
DO  - 10.2140/gt.2016.20.437
ID  - GT_2016_20_1_a6
ER  - 
%0 Journal Article
%A Kozai, Kenji
%T Hyperbolic structures from Sol on pseudo-Anosov mapping tori
%J Geometry & topology
%D 2016
%P 437-468
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2016.20.437/
%R 10.2140/gt.2016.20.437
%F GT_2016_20_1_a6
Kozai, Kenji. Hyperbolic structures from Sol on pseudo-Anosov mapping tori. Geometry & topology, Tome 20 (2016) no. 1, pp. 437-468. doi : 10.2140/gt.2016.20.437. http://geodesic.mathdoc.fr/articles/10.2140/gt.2016.20.437/

[1] H Abbaspour, M Moskowitz, Basic Lie theory, World Scientific (2007)

[2] L B Abdelghani, D Lines, Involutions on knot groups and varieties of representations in a Lie group, J. Knot Theory Ramifications 11 (2002) 81

[3] F Bonahon, Geometric structures on 3–manifolds, from: "Handbook of geometric topology" (editors R J Daverman, R B Sher), North-Holland (2002) 93

[4] J Danciger, A geometric transition from hyperbolic to anti-de Sitter geometry, Geom. Topol. 17 (2013) 3077

[5] C Ehresmann, Sur les espaces localement homogenes, Enseign. Math. 35 (1936) 317

[6] B Farb, D Margalit, A primer on mapping class groups, 49, Princeton Univ. Press (2012)

[7] A Fathi, F Laudenbach, V Poénaru, Thurston’s work on surfaces, 48, Princeton Univ. Press (2012)

[8] C D Frohman, E P Klassen, Deforming representations of knot groups in SU(2), Comment. Math. Helv. 66 (1991) 340

[9] W M Goldman, Geometric structures on manifolds and varieties of representations, from: "Geometry of group representations" (editors W M Goldman, A R Magid), Contemp. Math. 74, Amer. Math. Soc. (1988) 169

[10] M Heusener, J Kroll, Deforming abelian SU(2)–representations of knot groups, Comment. Math. Helv. 73 (1998) 480

[11] M Heusener, J Porti, Deformations of reducible representations of 3–manifold groups into PSL2(C), Algebr. Geom. Topol. 5 (2005) 965

[12] M Heusener, J Porti, E Suárez, Regenerating singular hyperbolic structures from Sol, J. Differential Geom. 59 (2001) 439

[13] M Heusener, J Porti, E Suárez Peiró, Deformations of reducible representations of 3-manifold groups into SL2(C), J. Reine Angew. Math. 530 (2001) 191

[14] C D Hodgson, Degeneration and regeneration of geometric structures on 3–manifolds, PhD thesis, Princeton University (1986)

[15] C D Hodgson, S P Kerckhoff, Rigidity of hyperbolic cone-manifolds and hyperbolic Dehn surgery, J. Differential Geom. 48 (1998) 1

[16] A Lubotzky, A R Magid, Varieties of representations of finitely generated groups, 336, Amer. Math. Soc. (1985)

[17] C T Mcmullen, Billiards and Teichmüller curves on Hilbert modular surfaces, J. Amer. Math. Soc. 16 (2003) 857

[18] R C Penner, A construction of pseudo-Anosov homeomorphisms, Trans. Amer. Math. Soc. 310 (1988) 179

[19] R C Penner, Bounds on least dilatations, Proc. Amer. Math. Soc. 113 (1991) 443

[20] J Porti, Torsion de Reidemeister pour les variétés hyperboliques, 612, Amer. Math. Soc. (1997)

[21] W P Thurston, The geometry and topology of three-manifolds, lecture notes (1979)

[22] W P Thurston, Hyperbolic structures on 3–manifolds, II : Surface groups and 3–manifolds which fiber over the circle, preprint (1998)

[23] A Weil, Remarks on the cohomology of groups, Ann. of Math. 80 (1964) 149

Cité par Sources :