Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
This paper derives new identities for the Weyl tensor on a gradient Ricci soliton, particularly in dimension four. First, we prove a Bochner–Weitzenböck-type formula for the norm of the self-dual Weyl tensor and discuss its applications, including connections between geometry and topology. In the second part, we are concerned with the interaction of different components of Riemannian curvature and (gradient and Hessian of) the soliton potential function. The Weyl tensor arises naturally in these investigations. Applications here are rigidity results.
Cao, Xiaodong 1 ; Tran, Hung 2
@article{GT_2016_20_1_a5, author = {Cao, Xiaodong and Tran, Hung}, title = {The {Weyl} tensor of gradient {Ricci} solitons}, journal = {Geometry & topology}, pages = {389--436}, publisher = {mathdoc}, volume = {20}, number = {1}, year = {2016}, doi = {10.2140/gt.2016.20.389}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2016.20.389/} }
Cao, Xiaodong; Tran, Hung. The Weyl tensor of gradient Ricci solitons. Geometry & topology, Tome 20 (2016) no. 1, pp. 389-436. doi : 10.2140/gt.2016.20.389. http://geodesic.mathdoc.fr/articles/10.2140/gt.2016.20.389/
[1] Self-duality in four-dimensional Riemannian geometry, Proc. Roy. Soc. London Ser. A 362 (1978) 425
, , ,[2] Équations différentielles non linéaires et problème de Yamabe concernant la courbure scalaire, J. Math. Pures Appl. 55 (1976) 269
,[3] Real analyticity of solutions of Hamilton’s equation, Math. Z. 195 (1987) 93
,[4] Sur quelques variétés d’Einstein compactes, Ann. Mat. Pura Appl. 53 (1961) 89
,[5] Einstein manifolds, 10, Springer (1987)
,[6] Manifolds with positive curvature operators are space forms, Ann. of Math. 167 (2008) 1079
, ,[7] Rotational symmetry of self-similar solutions to the Ricci flow, Invent. Math. 194 (2013) 731
,[8] Classification of manifolds with weakly –pinched curvatures, Acta Math. 200 (2008) 1
, ,[9] Manifolds with –pinched curvature are space forms, J. Amer. Math. Soc. 22 (2009) 287
, ,[10] Curvature, sphere theorems, and the Ricci flow, Bull. Amer. Math. Soc. 48 (2011) 1
, ,[11] An extension of E Hopf’s maximum principle with an application to Riemannian geometry, Duke Math. J. 25 (1958) 45
,[12] Existence of gradient Kähler–Ricci solitons, from: "Elliptic and parabolic methods in geometry" (editors B Chow, R Gulliver, S Levy, J Sullivan), Peters (1996) 1
,[13] Recent progress on Ricci solitons, from: "Recent advances in geometric analysis" (editors Y I Lee, C S Lin, M P Tsui), Adv. Lect. Math. 11, International Press (2010) 1
,[14] On locally conformally flat gradient steady Ricci solitons, Trans. Amer. Math. Soc. 364 (2012) 2377
, ,[15] On Bach-flat gradient shrinking Ricci solitons, Duke Math. J. 162 (2013) 1149
, ,[16] Compact gradient shrinking Ricci solitons with positive curvature operator, J. Geom. Anal. 17 (2007) 425
,[17] Curvature pinching estimate and singularities of the Ricci flow, Comm. Anal. Geom. 19 (2011) 975
,[18] On locally conformally flat gradient shrinking Ricci solitons, Commun. Contemp. Math. 13 (2011) 269
, , ,[19] Einstein four-manifolds of three-nonnegative curvature operator, (2013)
, ,[20] Generalized quasi-Einstein manifolds with harmonic Weyl tensor, Math. Z. 271 (2012) 751
,[21] The evolution of the Weyl tensor under the Ricci flow, Ann. Inst. Fourier (Grenoble) 61 (2011) 1407
, ,[22] On four-dimensional anti-self-dual gradient Ricci solitons, J. Geom. Anal. 25 (2015) 1335
, ,[23] Hamilton’s Ricci flow, 77, Amer. Math. Soc. (2006)
, , ,[24] Self-dual Kähler manifolds and Einstein manifolds of dimension four, Compositio Math. 49 (1983) 405
,[25] A Myers-type theorem and compact Ricci solitons, Proc. Amer. Math. Soc. 134 (2006) 3645
,[26] Rotationally symmetric shrinking and expanding gradient Kähler–Ricci solitons, J. Differential Geom. 65 (2003) 169
, , ,[27] Rigidity of shrinking Ricci solitons, Math. Z. 269 (2011) 461
, ,[28] The Weyl functional, de Rham cohomology, and Kähler–Einstein metrics, Ann. of Math. 148 (1998) 315
,[29] Four-manifolds with δW+ = 0 and Einstein constants of the sphere, Math. Ann. 318 (2000) 417
,[30] On Einstein manifolds of positive sectional curvature, Ann. Global Anal. Geom. 17 (1999) 315
, ,[31] Three-manifolds with positive Ricci curvature, J. Differential Geom. 17 (1982) 255
,[32] Four-manifolds with positive curvature operator, J. Differential Geom. 24 (1986) 153
,[33] The Ricci flow on surfaces, from: "Mathematics and general relativity" (editor J A Isenberg), Contemp. Math. 71, Amer. Math. Soc. (1988) 237
,[34] On rotationally invariant shrinking Ricci solitons, Pacific J. Math. 236 (2008) 73
,[35] The Yamabe problem, Bull. Amer. Math. Soc. 17 (1987) 37
, ,[36] Metrics with nonnegative isotropic curvature, Duke Math. J. 72 (1993) 649
, ,[37] On gradient Ricci solitons, J. Geom. Anal. 23 (2013) 539
, ,[38] Noncompact shrinking four solitons with nonnegative curvature, J. Reine Angew. Math. 645 (2010) 125
,[39] On a classification of gradient shrinking solitons, Math. Res. Lett. 15 (2008) 941
, ,[40] The entropy formula for the Ricci flow and its geometric applications,
,[41] Ricci flow with surgery on three-manifolds,
,[42] Riemannian geometry, 171, Springer (2006)
,[43] Rigidity of gradient Ricci solitons, Pacific J. Math. 241 (2009) 329
, ,[44] On the classification of gradient Ricci solitons, Geom. Topol. 14 (2010) 2277
, ,[45] Remarks on non-compact gradient Ricci solitons, Math. Z. 268 (2011) 777
, , ,[46] Conformal deformation of a Riemannian metric to constant scalar curvature, J. Differential Geom. 20 (1984) 479
,[47] The curvature of 4–dimensional Einstein spaces, from: "Global Analysis : Papers in honor of K Kodaira" (editors D C Spencer, I Iyanaga), Univ. Tokyo Press (1969) 355
, ,[48] The Bochner technique in differential geometry, Math. Rep. 3 (1988) 289
,[49] Four-dimensional shrinking gradient solitons with small curvature, preprint (2012)
,[50] Rigidity of Einstein 4–manifolds with positive curvature, Invent. Math. 142 (2000) 435
,[51] Gradient shrinking solitons with vanishing Weyl tensor, Pacific J. Math. 242 (2009) 189
,Cité par Sources :