Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We show that a decorated knot concordance from to induces a homomorphism on knot Floer homology that preserves the Alexander and Maslov gradings. Furthermore, it induces a morphism of the spectral sequences to that agrees with on the page and is the identity on the page. It follows that is nonvanishing on . We also obtain an invariant of slice disks in homology 4–balls bounding .
If is invertible, then is injective, hence
for every . This implies an unpublished result of Ruberman that if there is an invertible concordance from the knot to , then , where denotes the Seifert genus. Furthermore, if and is fibred, then so is .
Juhász, András 1 ; Marengon, Marco 2
@article{GT_2016_20_6_a8, author = {Juh\'asz, Andr\'as and Marengon, Marco}, title = {Concordance maps in knot {Floer} homology}, journal = {Geometry & topology}, pages = {3623--3673}, publisher = {mathdoc}, volume = {20}, number = {6}, year = {2016}, doi = {10.2140/gt.2016.20.3623}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2016.20.3623/} }
Juhász, András; Marengon, Marco. Concordance maps in knot Floer homology. Geometry & topology, Tome 20 (2016) no. 6, pp. 3623-3673. doi : 10.2140/gt.2016.20.3623. http://geodesic.mathdoc.fr/articles/10.2140/gt.2016.20.3623/
[1] On the functoriality of the blow-up construction, Bull. Belg. Math. Soc. Simon Stevin 17 (2010) 821
, ,[2] Topological quantum field theories, Inst. Hautes Études Sci. Publ. Math. 68 (1988) 175 | DOI
,[3] Computations of Heegaard–Floer knot homology, J. Knot Theory Ramifications 21 (2012) | DOI
, ,[4] Axiomatic approach to topological quantum field theory, from: "Encyclopedia of Mathematical Physics" (editors J P Françoise, G L Naber, T S Tsun), Academic Press (2006)
, ,[5] Some problems in knot theory, from: "Topology of 3–manifolds and related topics", Prentice-Hall (1962) 168
,[6] Man and machine thinking about the smooth 4–dimensional Poincaré conjecture, Quantum Topol. 1 (2010) 171 | DOI
, , , ,[7] Foliations and the topology of 3–manifolds, J. Differential Geom. 18 (1983) 445
,[8] Knot Floer homology detects genus-one fibred knots, Amer. J. Math. 130 (2008) 1151 | DOI
,[9] On knot Floer homology and cabling, PhD thesis, Columbia University (2005)
,[10] On the classification of tight contact structures, II, J. Differential Geom. 55 (2000) 83
,[11] Contact structures, sutured Floer homology and TQFT, preprint (2008)
, , ,[12] An invariant of link cobordisms from Khovanov homology, Algebr. Geom. Topol. 4 (2004) 1211 | DOI
,[13] Holomorphic discs and sutured manifolds, Algebr. Geom. Topol. 6 (2006) 1429 | DOI
,[14] Floer homology and surface decompositions, Geom. Topol. 12 (2008) 299 | DOI
,[15] The sutured Floer homology polytope, Geom. Topol. 14 (2010) 1303 | DOI
,[16] Cobordisms of sutured manifolds and the functoriality of link Floer homology, Adv. Math. 299 (2016) 940 | DOI
,[17] Naturality and mapping class groups in Heegaard Floer homology, preprint (2012)
, ,[18] Rank inequalities for the Heegaard Floer homology of Seifert homology spheres, Trans. Amer. Math. Soc. 367 (2015) 7291 | DOI
, ,[19] Gauge theory and Rasmussen’s invariant, J. Topol. 6 (2013) 659 | DOI
, ,[20] A cylindrical reformulation of Heegaard Floer homology, Geom. Topol. 10 (2006) 955 | DOI
,[21] Structures de contact sur les fibrés principaux en cercles de dimension trois, Ann. Inst. Fourier (Grenoble) 27 (1977) 1
,[22] On the Khovanov and knot Floer homologies of quasi-alternating links, from: "Proceedings of Gökova Geometry–Topology Conference 2007" (editors S Akbulut, T Önder, R J Stern), GGT (2008) 60
, ,[23] A combinatorial description of knot Floer homology, Ann. of Math. 169 (2009) 633 | DOI
, , ,[24] A user’s guide to spectral sequences, 58, Cambridge University Press (2001)
,[25] Knot Floer homology detects fibred knots, Invent. Math. 170 (2007) 577 | DOI
,[26] Knot Floer homology and the four-ball genus, Geom. Topol. 7 (2003) 615 | DOI
, ,[27] Holomorphic disks and genus bounds, Geom. Topol. 8 (2004) 311 | DOI
, ,[28] Holomorphic disks and knot invariants, Adv. Math. 186 (2004) 58 | DOI
, ,[29] Holomorphic disks and topological invariants for closed three-manifolds, Ann. of Math. 159 (2004) 1027 | DOI
, ,[30] Holomorphic triangles and invariants for smooth four-manifolds, Adv. Math. 202 (2006) 326 | DOI
, ,[31] Floer homology and knot complements, PhD thesis, Harvard University (2003)
,[32] Khovanov homology and the slice genus, Invent. Math. 182 (2010) 419 | DOI
,[33] Degree one maps between geometric 3–manifolds, Trans. Amer. Math. Soc. 332 (1992) 411 | DOI
,[34] Grid diagrams and the Ozsváth–Szabó tau-invariant, Math. Res. Lett. 18 (2011) 1239 | DOI
,[35] Moving basepoints and the induced automorphisms of link Floer homology, Algebr. Geom. Topol. 15 (2015) 2479 | DOI
,[36] Knot group epimorphisms, J. Knot Theory Ramifications 15 (2006) 153 | DOI
, ,[37] On fibering certain 3–manifolds, from: "Topology of 3–manifolds and related topics", Prentice-Hall (1962) 95
,[38] Invertible knot cobordisms, Comment. Math. Helv. 46 (1971) 240 | DOI
,Cité par Sources :