Concordance maps in knot Floer homology
Geometry & topology, Tome 20 (2016) no. 6, pp. 3623-3673.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We show that a decorated knot concordance C from K to K induces a homomorphism FC on knot Floer homology that preserves the Alexander and Maslov gradings. Furthermore, it induces a morphism of the spectral sequences to HF̂(S3)2 that agrees with FC on the E1 page and is the identity on the E page. It follows that FC is nonvanishing on HFK̂0(K,τ(K)). We also obtain an invariant of slice disks in homology 4–balls bounding S3.

If C is invertible, then FC is injective, hence

for every i,j . This implies an unpublished result of Ruberman that if there is an invertible concordance from the knot K to K, then g(K) g(K), where g denotes the Seifert genus. Furthermore, if g(K) = g(K) and K is fibred, then so is K.

DOI : 10.2140/gt.2016.20.3623
Classification : 57M27, 57R58
Keywords: concordance, knot Floer homology, genus

Juhász, András 1 ; Marengon, Marco 2

1 Mathematical Institute, University of Oxford, Andrew Wiles Building, Radcliffe Observatory Quarter, Woodstock Road, Oxford, OX2 6GG, United Kingdom
2 Department of Mathematics, Imperial College London, 180 Queen’s Gate, London, SW7 2AZ, United Kingdom
@article{GT_2016_20_6_a8,
     author = {Juh\'asz, Andr\'as and Marengon, Marco},
     title = {Concordance maps in knot {Floer} homology},
     journal = {Geometry & topology},
     pages = {3623--3673},
     publisher = {mathdoc},
     volume = {20},
     number = {6},
     year = {2016},
     doi = {10.2140/gt.2016.20.3623},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2016.20.3623/}
}
TY  - JOUR
AU  - Juhász, András
AU  - Marengon, Marco
TI  - Concordance maps in knot Floer homology
JO  - Geometry & topology
PY  - 2016
SP  - 3623
EP  - 3673
VL  - 20
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2016.20.3623/
DO  - 10.2140/gt.2016.20.3623
ID  - GT_2016_20_6_a8
ER  - 
%0 Journal Article
%A Juhász, András
%A Marengon, Marco
%T Concordance maps in knot Floer homology
%J Geometry & topology
%D 2016
%P 3623-3673
%V 20
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2016.20.3623/
%R 10.2140/gt.2016.20.3623
%F GT_2016_20_6_a8
Juhász, András; Marengon, Marco. Concordance maps in knot Floer homology. Geometry & topology, Tome 20 (2016) no. 6, pp. 3623-3673. doi : 10.2140/gt.2016.20.3623. http://geodesic.mathdoc.fr/articles/10.2140/gt.2016.20.3623/

[1] G Arone, M Kankaanrinta, On the functoriality of the blow-up construction, Bull. Belg. Math. Soc. Simon Stevin 17 (2010) 821

[2] M Atiyah, Topological quantum field theories, Inst. Hautes Études Sci. Publ. Math. 68 (1988) 175 | DOI

[3] J A Baldwin, W D Gillam, Computations of Heegaard–Floer knot homology, J. Knot Theory Ramifications 21 (2012) | DOI

[4] C Blanchet, V Turaev, Axiomatic approach to topological quantum field theory, from: "Encyclopedia of Mathematical Physics" (editors J P Françoise, G L Naber, T S Tsun), Academic Press (2006)

[5] R H Fox, Some problems in knot theory, from: "Topology of 3–manifolds and related topics", Prentice-Hall (1962) 168

[6] M Freedman, R Gompf, S Morrison, K Walker, Man and machine thinking about the smooth 4–dimensional Poincaré conjecture, Quantum Topol. 1 (2010) 171 | DOI

[7] D Gabai, Foliations and the topology of 3–manifolds, J. Differential Geom. 18 (1983) 445

[8] P Ghiggini, Knot Floer homology detects genus-one fibred knots, Amer. J. Math. 130 (2008) 1151 | DOI

[9] M Hedden, On knot Floer homology and cabling, PhD thesis, Columbia University (2005)

[10] K Honda, On the classification of tight contact structures, II, J. Differential Geom. 55 (2000) 83

[11] K Honda, W Kazez, G Matić, Contact structures, sutured Floer homology and TQFT, preprint (2008)

[12] M Jacobsson, An invariant of link cobordisms from Khovanov homology, Algebr. Geom. Topol. 4 (2004) 1211 | DOI

[13] A Juhász, Holomorphic discs and sutured manifolds, Algebr. Geom. Topol. 6 (2006) 1429 | DOI

[14] A Juhász, Floer homology and surface decompositions, Geom. Topol. 12 (2008) 299 | DOI

[15] A Juhász, The sutured Floer homology polytope, Geom. Topol. 14 (2010) 1303 | DOI

[16] A Juhász, Cobordisms of sutured manifolds and the functoriality of link Floer homology, Adv. Math. 299 (2016) 940 | DOI

[17] A Juhász, D Thurston, Naturality and mapping class groups in Heegaard Floer homology, preprint (2012)

[18] Ç Karakurt, T Lidman, Rank inequalities for the Heegaard Floer homology of Seifert homology spheres, Trans. Amer. Math. Soc. 367 (2015) 7291 | DOI

[19] P B Kronheimer, T S Mrowka, Gauge theory and Rasmussen’s invariant, J. Topol. 6 (2013) 659 | DOI

[20] R Lipshitz, A cylindrical reformulation of Heegaard Floer homology, Geom. Topol. 10 (2006) 955 | DOI

[21] R Lutz, Structures de contact sur les fibrés principaux en cercles de dimension trois, Ann. Inst. Fourier (Grenoble) 27 (1977) 1

[22] C Manolescu, P Ozsváth, On the Khovanov and knot Floer homologies of quasi-alternating links, from: "Proceedings of Gökova Geometry–Topology Conference 2007" (editors S Akbulut, T Önder, R J Stern), GGT (2008) 60

[23] C Manolescu, P Ozsváth, S Sarkar, A combinatorial description of knot Floer homology, Ann. of Math. 169 (2009) 633 | DOI

[24] J Mccleary, A user’s guide to spectral sequences, 58, Cambridge University Press (2001)

[25] Y Ni, Knot Floer homology detects fibred knots, Invent. Math. 170 (2007) 577 | DOI

[26] P Ozsváth, Z Szabó, Knot Floer homology and the four-ball genus, Geom. Topol. 7 (2003) 615 | DOI

[27] P Ozsváth, Z Szabó, Holomorphic disks and genus bounds, Geom. Topol. 8 (2004) 311 | DOI

[28] P Ozsváth, Z Szabó, Holomorphic disks and knot invariants, Adv. Math. 186 (2004) 58 | DOI

[29] P Ozsváth, Z Szabó, Holomorphic disks and topological invariants for closed three-manifolds, Ann. of Math. 159 (2004) 1027 | DOI

[30] P Ozsváth, Z Szabó, Holomorphic triangles and invariants for smooth four-manifolds, Adv. Math. 202 (2006) 326 | DOI

[31] J A Rasmussen, Floer homology and knot complements, PhD thesis, Harvard University (2003)

[32] J Rasmussen, Khovanov homology and the slice genus, Invent. Math. 182 (2010) 419 | DOI

[33] Y W Rong, Degree one maps between geometric 3–manifolds, Trans. Amer. Math. Soc. 332 (1992) 411 | DOI

[34] S Sarkar, Grid diagrams and the Ozsváth–Szabó tau-invariant, Math. Res. Lett. 18 (2011) 1239 | DOI

[35] S Sarkar, Moving basepoints and the induced automorphisms of link Floer homology, Algebr. Geom. Topol. 15 (2015) 2479 | DOI

[36] D S Silver, W Whitten, Knot group epimorphisms, J. Knot Theory Ramifications 15 (2006) 153 | DOI

[37] J Stallings, On fibering certain 3–manifolds, from: "Topology of 3–manifolds and related topics", Prentice-Hall (1962) 95

[38] D W Sumners, Invertible knot cobordisms, Comment. Math. Helv. 46 (1971) 240 | DOI

Cité par Sources :