A 1–parameter family of spherical CR uniformizations of the figure eight knot complement
Geometry & topology, Tome 20 (2016) no. 6, pp. 3571-3621.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We describe a simple fundamental domain for the holonomy group of the boundary unipotent spherical CR uniformization of the figure eight knot complement, and deduce that small deformations of that holonomy group (such that the boundary holonomy remains parabolic) also give a uniformization of the figure eight knot complement. Finally, we construct an explicit 1–parameter family of deformations of the boundary unipotent holonomy group such that the boundary holonomy is twist-parabolic. For small values of the twist of these parabolic elements, this produces a 1–parameter family of pairwise nonconjugate spherical CR uniformizations of the figure eight knot complement.

DOI : 10.2140/gt.2016.20.3571
Classification : 22E40, 32V05, 57M50
Keywords: geometric structures, spherical CR structures, complex hyperbolic geometry, discrete groups

Deraux, Martin 1

1 Institut Fourier, Université Grenoble Alpes, 100 rue des maths, 38610 Gières, France
@article{GT_2016_20_6_a7,
     author = {Deraux, Martin},
     title = {A 1{\textendash}parameter family of spherical {CR} uniformizations of the figure eight knot complement},
     journal = {Geometry & topology},
     pages = {3571--3621},
     publisher = {mathdoc},
     volume = {20},
     number = {6},
     year = {2016},
     doi = {10.2140/gt.2016.20.3571},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2016.20.3571/}
}
TY  - JOUR
AU  - Deraux, Martin
TI  - A 1–parameter family of spherical CR uniformizations of the figure eight knot complement
JO  - Geometry & topology
PY  - 2016
SP  - 3571
EP  - 3621
VL  - 20
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2016.20.3571/
DO  - 10.2140/gt.2016.20.3571
ID  - GT_2016_20_6_a7
ER  - 
%0 Journal Article
%A Deraux, Martin
%T A 1–parameter family of spherical CR uniformizations of the figure eight knot complement
%J Geometry & topology
%D 2016
%P 3571-3621
%V 20
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2016.20.3571/
%R 10.2140/gt.2016.20.3571
%F GT_2016_20_6_a7
Deraux, Martin. A 1–parameter family of spherical CR uniformizations of the figure eight knot complement. Geometry & topology, Tome 20 (2016) no. 6, pp. 3571-3621. doi : 10.2140/gt.2016.20.3571. http://geodesic.mathdoc.fr/articles/10.2140/gt.2016.20.3571/

[1] S Anan’In, C H Grossi, N Gusevskii, Complex hyperbolic structures on disc bundles over surfaces, Int. Math. Res. Not. 2011 (2011) 4295 | DOI

[2] S Basu, R Pollack, M F Roy, Algorithms in real algebraic geometry, 10, Springer (2006)

[3] N Bergeron, E Falbel, A Guilloux, Tetrahedra of flags, volume and homology of SL(3), Geom. Topol. 18 (2014) 1911 | DOI

[4] H Cohen, A course in computational algebraic number theory, 138, Springer (1993) | DOI

[5] M Deraux, Deforming the R–Fuchsian (4,4,4)–triangle group into a lattice, Topology 45 (2006) 989 | DOI

[6] M Deraux, On spherical CR uniformization of 3–manifolds, Exp. Math. 24 (2015) 355 | DOI

[7] M Deraux, E Falbel, Complex hyperbolic geometry of the figure-eight knot, Geom. Topol. 19 (2015) 237 | DOI

[8] M Deraux, J R Parker, J Paupert, New non-arithmetic complex hyperbolic lattices, Invent. Math. 203 (2016) 681 | DOI

[9] E Falbel, A spherical CR structure on the complement of the figure eight knot with discrete holonomy, J. Differential Geom. 79 (2008) 69

[10] E Falbel, A Guilloux, P V Koseleff, F Rouillier, M Thistlethwaite, Character varieties for SL(3, C) : the figure eight knot, Exp. Math. 25 (2016) 219 | DOI

[11] E Falbel, P V Koseleff, F Rouillier, Representations of fundamental groups of 3–manifolds into PGL(3, C) : exact computations in low complexity, Geom. Dedicata 177 (2015) 229 | DOI

[12] G Giraud, Sur certaines fonctions automorphes de deux variables, Ann. Sci. École Norm. Sup. 38 (1921) 43

[13] W M Goldman, Conformally flat manifolds with nilpotent holonomy and the uniformization problem for 3–manifolds, Trans. Amer. Math. Soc. 278 (1983) 573 | DOI

[14] W M Goldman, Complex hyperbolic geometry, Clarendon (1999)

[15] W M Goldman, M Kapovich, B Leeb, Complex hyperbolic manifolds homotopy equivalent to a Riemann surface, Comm. Anal. Geom. 9 (2001) 61 | DOI

[16] W M Goldman, J R Parker, Dirichlet polyhedra for dihedral groups acting on complex hyperbolic space, J. Geom. Anal. 2 (1992) 517 | DOI

[17] M Heusener, V Muñoz, J Porti, The SL(3, C)–character variety of the figure eight knot, preprint (2015)

[18] Y Kamishima, T Tsuboi, CR-structures on Seifert manifolds, Invent. Math. 104 (1991) 149 | DOI

[19] J R Parker, Complex hyperbolic Kleinian groups, to appear

[20] J R Parker, I D Platis, Open sets of maximal dimension in complex hyperbolic quasi-Fuchsian space, J. Differential Geom. 73 (2006) 319

[21] J R Parker, P Will, A complex hyperbolic Riley slice, preprint (2015)

[22] R Riley, A quadratic parabolic group, Math. Proc. Cambridge Philos. Soc. 77 (1975) 281 | DOI

[23] R Riley, Nonabelian representations of 2–bridge knot groups, Quart. J. Math. Oxford Ser. 35 (1984) 191 | DOI

[24] F Rouillier, Solving zero-dimensional systems through the rational univariate representation, Appl. Algebra Engrg. Comm. Comput. 9 (1999) 433 | DOI

[25] R E Schwartz, Degenerating the complex hyperbolic ideal triangle groups, Acta Math. 186 (2001) 105 | DOI

[26] R E Schwartz, Complex hyperbolic triangle groups, from: "Proceedings of the International Congress of Mathematicians, Vol II" (editor T Li), Higher Ed. Press (2002) 339

[27] R E Schwartz, Real hyperbolic on the outside, complex hyperbolic on the inside, Invent. Math. 151 (2003) 221 | DOI

[28] R E Schwartz, Spherical CR geometry and Dehn surgery, 165, Princeton University Press (2007) | DOI

[29] D Toledo, Representations of surface groups in complex hyperbolic space, J. Differential Geom. 29 (1989) 125

[30] P Will, The punctured torus and Lagrangian triangle groups in PU(2,1), J. Reine Angew. Math. 602 (2007) 95 | DOI

Cité par Sources :