Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
A complex manifold of dimension is said to be –complete for some if it admits a smooth exhaustion function whose Levi form has at least positive eigenvalues at every point; thus, –complete manifolds are Stein manifolds. Such an is necessarily noncompact and its highest-dimensional a priori nontrivial cohomology group is . In this paper we show that if , is even, and has finite topology, then every cohomology class in is Poincaré dual to an analytic cycle in consisting of proper holomorphic images of the ball. This holds in particular for the complement of any complex projective manifold defined by independent equations. If has infinite topology, then the same holds for elements of the group , where is an exhaustion of by compact smoothly bounded domains. Finally, we provide an example of a quasi-projective manifold with a cohomology class which is analytic but not algebraic.
Forstnerič, Franc 1 ; Smrekar, Jaka 1 ; Sukhov, Alexandre 2
@article{GT_2016_20_1_a4, author = {Forstneri\v{c}, Franc and Smrekar, Jaka and Sukhov, Alexandre}, title = {On the {Hodge} conjecture for q{\textendash}complete manifolds}, journal = {Geometry & topology}, pages = {353--388}, publisher = {mathdoc}, volume = {20}, number = {1}, year = {2016}, doi = {10.2140/gt.2016.20.353}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2016.20.353/} }
TY - JOUR AU - Forstnerič, Franc AU - Smrekar, Jaka AU - Sukhov, Alexandre TI - On the Hodge conjecture for q–complete manifolds JO - Geometry & topology PY - 2016 SP - 353 EP - 388 VL - 20 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2016.20.353/ DO - 10.2140/gt.2016.20.353 ID - GT_2016_20_1_a4 ER -
%0 Journal Article %A Forstnerič, Franc %A Smrekar, Jaka %A Sukhov, Alexandre %T On the Hodge conjecture for q–complete manifolds %J Geometry & topology %D 2016 %P 353-388 %V 20 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2016.20.353/ %R 10.2140/gt.2016.20.353 %F GT_2016_20_1_a4
Forstnerič, Franc; Smrekar, Jaka; Sukhov, Alexandre. On the Hodge conjecture for q–complete manifolds. Geometry & topology, Tome 20 (2016) no. 1, pp. 353-388. doi : 10.2140/gt.2016.20.353. http://geodesic.mathdoc.fr/articles/10.2140/gt.2016.20.353/
[1] The Lefschetz theorem on hyperplane sections, Ann. of Math. 69 (1959) 713
, ,[2] A topological property of Runge pairs, Ann. of Math. 76 (1962) 499
, ,[3] Cycles of algebraic manifolds and ∂∂–cohomology, Ann. Scuola Norm. Sup. Pisa 25 (1971) 59
, ,[4] Vector bundles and homogeneous spaces, Proc. Sympos. Pure Math. 3, Amer. Math. Soc. (1961) 7
, ,[5] Analytic cycles on complex manifolds, Topology 1 (1962) 25
, ,[6] Classification of irregular varieties: minimal models and abelian varieties, 1515, Springer (1992)
, , , editors,[7] Der Abstand von einer algebraischen Mannigfaltigkeit im komplex-projektiven Raum, Math. Ann. 187 (1970) 150
,[8] Topology and geometry, 139, Springer (1993)
,[9] Modules of differentials of the Atiyah–Hirzebruch spectral sequence, II, Mat. Sb. 83 (1970) 61
,[10] q–convexity : a survey, from: "Complex analysis and geometry" (editors V Ancona, E Ballico, R M Mirò-Roig, A Silva), Pitman Res. Notes Math. Ser. 366, Longman, Harlow (1997) 83
,[11] Analytic cycles and vector bundles on non-compact algebraic varieties, Invent. Math. 28 (1975) 1
, ,[12] The Hodge conjecture, from: "The millennium prize problems" (editors J Carlson, A Jaffe, A Wiles), Clay Math. Inst. (2006) 45
,[13] Cohomology of q–convex spaces in top degrees, Math. Z. 204 (1990) 283
,[14] Analytic methods in algebraic geometry, 1, International Press (2012)
,[15] On the existence of symplectic submanifolds, from: "Contact and symplectic geometry" (editor C B Thomas), Publ. Newton Inst. 8, Cambridge Univ. Press (1996) 307
,[16] Symplectic submanifolds and almost-complex geometry, J. Differential Geom. 44 (1996) 666
,[17] Immersions and embeddings in domains of holomorphy, Trans. Amer. Math. Soc. 347 (1995) 2813
,[18] Cycles analytiques (d’après M F Atiyah et F Hirzebruch), from: "Séminaire Bourbaki 1961∕1962 (Exposé 223)", W. A. Benjamin (1966)
,[19] Holomorphic curves in complex spaces, Duke Math. J. 139 (2007) 203
, ,[20] Approximation of holomorphic mappings on strongly pseudoconvex domains, Forum Math. 20 (2008) 817
, ,[21] Strongly pseudoconvex domains as subvarieties of complex manifolds, Amer. J. Math. 132 (2010) 331
, ,[22] Plongements des variétés de Stein, Comment. Math. Helv. 45 (1970) 170
,[23] Noncritical holomorphic functions on Stein manifolds, Acta Math. 191 (2003) 143
,[24] Holomorphic flexibility properties of complex manifolds, Amer. J. Math. 128 (2006) 239
,[25] Stein manifolds and holomorphic mappings: the homotopy principle in complex analysis, 56, Springer (2011)
,[26] Discs in pseudoconvex domains, Comment. Math. Helv. 67 (1992) 129
, ,[27] Analytische Faserungen über holomorph-vollständigen Räumen, Math. Ann. 135 (1958) 263
,[28] On Levi’s problem and the imbedding of real-analytic manifolds, Ann. of Math. 68 (1958) 460
,[29] Une notion de dimension cohomologique dans la théorie des espaces complexes, Bull. Soc. Math. France 87 (1959) 341
,[30] Theory of q–convexity and q–concavity, from: "Several complex variables, VII" (editors H Grauert, T Peternell, R Remmert), Encyclopaedia Math. Sci. 74, Springer (1994) 259
,[31] Infinitesimal methods in Hodge theory, from: "Algebraic cycles and Hodge theory" (editors A Albano, F Bardelli), Lecture Notes in Math. 1594, Springer, Berlin (1994) 1
,[32] On the Noether–Lefschetz theorem and some remarks on codimension-two cycles, Math. Ann. 271 (1985) 31
, ,[33] Hodge’s general conjecture is false for trivial reasons, Topology 8 (1969) 299
,[34] Zur Homotopietyp Steinscher Räume, J. Reine Angew. Math. 338 (1983) 121
,[35] Zum Homotopietyp q–vollständiger Räume, J. Reine Angew. Math. 364 (1986) 1
,[36] Andreotti–Grauert theory by integral formulas, 74, Birkhäuser (1988) 270
, ,[37] The topological invariants of algebraic varieties, from: "Proceedings of the International Congress of Mathematicians, I", Amer. Math. Soc. (1952) 182
,[38] Les foncteurs dérivés de et leurs applications en théorie des modules, 254, Springer (1972)
,[39] Envelopes of holomorphy and holomorphic discs, Invent. Math. 178 (2009) 73
,[40] A tranversality theorem for holomorphic mappings and stability of Eisenman–Kobayashi measures, Trans. Amer. Math. Soc. 348 (1996) 661
, ,[41] Divisor class groups on algebraic varieties, Proc. Nat. Acad. Sci. USA 39 (1953) 872
, ,[42] Singular homology theory, 70, Springer (1980)
,[43] On axiomatic homology theory, Pacific J. Math. 12 (1962) 337
,[44] Completeness of noncompact analytic spaces, Publ. Res. Inst. Math. Sci. 20 (1984) 683
,[45] q–completeness of subsets in complex projective space, Math. Z. 195 (1987) 443
,[46] Über eine Vermutung von Hartshorne, Math. Ann. 201 (1973) 221
,[47] Omologia degli spazi q–pseudoconvessi, Ann. Scuola Norm. Sup. Pisa 16 (1962) 299
,[48] Torsion cohomology classes and algebraic cycles on complex projective manifolds, Adv. Math. 198 (2005) 107
, ,[49] Algebraic topology, Springer (1981)
,[50] Torsion algebraic cycles and complex cobordism, J. Amer. Math. Soc. 10 (1997) 467
,[51] Stratified transversality of holomorphic maps, Internat. J. Math. 24 (2013) 1350106, 12
,[52] An introduction to homological algebra, 38, Cambridge Univ. Press (1994)
,Cité par Sources :