Cylindrical contact homology and topological entropy
Geometry & topology, Tome 20 (2016) no. 6, pp. 3519-3569.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We establish a relation between the growth of the cylindrical contact homology of a contact manifold and the topological entropy of Reeb flows on this manifold. We show that if a contact manifold (M,ξ) admits a hypertight contact form λ0 for which the cylindrical contact homology has exponential homotopical growth rate, then the Reeb flow of every contact form on (M,ξ) has positive topological entropy. Using this result, we provide numerous new examples of contact 3–manifolds on which every Reeb flow has positive topological entropy.

DOI : 10.2140/gt.2016.20.3519
Classification : 37B40, 53D35, 53D42, 37J05
Keywords: contact homology, Reeb flows, topological entropy, symplectic field theory

Alves, Marcelo 1

1 Institut de Mathématiques, Université de Neuchâtel, Rue Emile-Argand 11, CH-2000 Neuchâtel, Switzerland
@article{GT_2016_20_6_a6,
     author = {Alves, Marcelo},
     title = {Cylindrical contact homology and topological entropy},
     journal = {Geometry & topology},
     pages = {3519--3569},
     publisher = {mathdoc},
     volume = {20},
     number = {6},
     year = {2016},
     doi = {10.2140/gt.2016.20.3519},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2016.20.3519/}
}
TY  - JOUR
AU  - Alves, Marcelo
TI  - Cylindrical contact homology and topological entropy
JO  - Geometry & topology
PY  - 2016
SP  - 3519
EP  - 3569
VL  - 20
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2016.20.3519/
DO  - 10.2140/gt.2016.20.3519
ID  - GT_2016_20_6_a6
ER  - 
%0 Journal Article
%A Alves, Marcelo
%T Cylindrical contact homology and topological entropy
%J Geometry & topology
%D 2016
%P 3519-3569
%V 20
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2016.20.3519/
%R 10.2140/gt.2016.20.3519
%F GT_2016_20_6_a6
Alves, Marcelo. Cylindrical contact homology and topological entropy. Geometry & topology, Tome 20 (2016) no. 6, pp. 3519-3569. doi : 10.2140/gt.2016.20.3519. http://geodesic.mathdoc.fr/articles/10.2140/gt.2016.20.3519/

[1] P Albers, B Bramham, C Wendl, On nonseparating contact hypersurfaces in symplectic 4–manifolds, Algebr. Geom. Topol. 10 (2010) 697 | DOI

[2] M R R Alves, Growth rate of Legendrian contact homology and dynamics of Reeb flows, PhD thesis, Université Libre de Bruxelles (2014)

[3] M R R Alves, Legendrian contact homology and topological entropy, preprint (2014)

[4] M R R Alves, Positive topological entropy for Reeb flows on 3–dimensional Anosov contact manifolds, preprint (2015)

[5] M R R Alves, P A S Salomão, Legendrian contact homology on the complement of Reeb orbits and topological entropy, in preparation

[6] F Bourgeois, A survey of contact homology, from: "New perspectives and challenges in symplectic field theory" (editors M Abreu, F Lalonde, L Polterovich), CRM Proc. Lecture Notes 49, Amer. Math. Soc. (2009) 45

[7] F Bourgeois, T Ekholm, Y Eliashberg, Effect of Legendrian surgery, Geom. Topol. 16 (2012) 301 | DOI

[8] F Bourgeois, Y Eliashberg, H Hofer, K Wysocki, E Zehnder, Compactness results in symplectic field theory, Geom. Topol. 7 (2003) 799 | DOI

[9] F Bourgeois, K Mohnke, Coherent orientations in symplectic field theory, Math. Z. 248 (2004) 123 | DOI

[10] R Bowen, Topological entropy and axiom A, from: "Global Analysis" (editors S S Chern, S Smale), Amer. Math. Soc. (1970) 23

[11] P Boyland, Isotopy stability of dynamics on surfaces, from: "Geometry and topology in dynamics" (editors M Barge, K Kuperberg), Contemp. Math. 246, Amer. Math. Soc. (1999) 17 | DOI

[12] V Colin, K Honda, Constructions contrôlées de champs de Reeb et applications, Geom. Topol. 9 (2005) 2193 | DOI

[13] D L Dragnev, Fredholm theory and transversality for noncompact pseudoholomorphic maps in symplectizations, Comm. Pure Appl. Math. 57 (2004) 726 | DOI

[14] Y Eliashberg, A Givental, H Hofer, Introduction to symplectic field theory, Geom. Funct. Anal. (2000) 560 | DOI

[15] A Fathi, F Laudenbach, V Poenaru, editors, Travaux de Thurston sur les surfaces, 66, Société Mathématique de France (1979) 284

[16] A Fel’Shtyn, Dynamical zeta functions, Nielsen theory and Reidemeister torsion, 699, Amer. Math. Soc. (2000)

[17] S R Fenley, Homotopic indivisibility of closed orbits of 3–dimensional Anosov flows, Math. Z. 225 (1997) 289 | DOI

[18] P Foulon, B Hasselblatt, Contact Anosov flows on hyperbolic 3–manifolds, Geom. Topol. 17 (2013) 1225 | DOI

[19] U Frauenfelder, C Labrousse, F Schlenk, Slow volume growth for Reeb flows on spherizations and contact Bott–Samelson theorems, J. Topol. Anal. 7 (2015) 407 | DOI

[20] U Frauenfelder, F Schlenk, Volume growth in the component of the Dehn–Seidel twist, Geom. Funct. Anal. 15 (2005) 809 | DOI

[21] U Frauenfelder, F Schlenk, Fiberwise volume growth via Lagrangian intersections, J. Symplectic Geom. 4 (2006) 117 | DOI

[22] U Frauenfelder, F Schlenk, Filtered Hopf algebras and counting geodesic chords, Math. Ann. 360 (2014) 995 | DOI

[23] D T Gay, Four-dimensional symplectic cobordisms containing three-handles, Geom. Topol. 10 (2006) 1749 | DOI

[24] M Gromov, Pseudoholomorphic curves in symplectic manifolds, Invent. Math. 82 (1985) 307 | DOI

[25] M Handel, W P Thurston, Anosov flows on new three manifolds, Invent. Math. 59 (1980) 95 | DOI

[26] H Hofer, Pseudoholomorphic curves in symplectizations with applications to the Weinstein conjecture in dimension three, Invent. Math. 114 (1993) 515 | DOI

[27] H Hofer, K Wysocki, E Zehnder, Properties of pseudoholomorphic curves in symplectisations, I : Asymptotics, Ann. Inst. H. Poincaré Anal. Non Linéaire 13 (1996) 337

[28] H Hofer, K Wysocki, E Zehnder, Properties of pseudoholomorphic curves in symplectizations, III : Fredholm theory, from: "Topics in nonlinear analysis" (editors J Escher, G Simonett), Progr. Nonlinear Differential Equations Appl. 35, Birkhäuser (1999) 381 | DOI

[29] H Hofer, K Wysocki, E Zehnder, Finite energy foliations of tight three-spheres and Hamiltonian dynamics, Ann. of Math. 157 (2003) 125 | DOI

[30] U Hryniewicz, A Momin, P A S Salomão, A Poincaré–Birkhoff theorem for tight Reeb flows on S3, Invent. Math. 199 (2015) 333 | DOI

[31] B Jiang, Estimation of the number of periodic orbits, Pacific J. Math. 172 (1996) 151 | DOI

[32] A Katok, Lyapunov exponents, entropy and periodic orbits for diffeomorphisms, Inst. Hautes Études Sci. Publ. Math. 51 (1980) 137

[33] A Katok, Entropy and closed geodesics, Ergodic Theory Dynam. Systems 2 (1982) 339 | DOI

[34] A Katok, B Hasselblatt, Introduction to the modern theory of dynamical systems, 54, Cambridge Univ. Press (1995) | DOI

[35] Y Lima, O Sarig, Symbolic dynamics for three-dimensional flows with positive topological entropy, preprint (2014)

[36] L Macarini, F Schlenk, Positive topological entropy of Reeb flows on spherizations, Math. Proc. Cambridge Philos. Soc. 151 (2011) 103 | DOI

[37] A Momin, Contact homology of orbit complements and implied existence, J. Mod. Dyn. 5 (2011) 409 | DOI

[38] G P Paternain, Geodesic flows, 180, Birkhäuser (1999) | DOI

[39] C Robinson, Dynamical systems: Stability, symbolic dynamics, and chaos, CRC Press (1995)

[40] A Vaugon, On growth rate and contact homology, Algebr. Geom. Topol. 15 (2015) 623 | DOI

[41] C Wendl, Strongly fillable contact manifolds and J–holomorphic foliations, Duke Math. J. 151 (2010) 337 | DOI

Cité par Sources :