Deformations of colored đ”°đ”©N link homologies via foams
Geometry & topology, Tome 20 (2016) no. 6, pp. 3431-3517.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We prove a conjectured decomposition of deformed slN link homology, as well as an extension to the case of colored links, generalizing results of Lee, Gornik, and Wu. To this end, we use foam technology to give a completely combinatorial construction of Wu’s deformed colored slN link homologies. By studying the underlying deformed higher representation-theoretic structures and generalizing the Karoubi envelope approach of Bar-Natan and Morrison, we explicitly compute the deformed invariants in terms of undeformed type A link homologies of lower rank and color.

DOI : 10.2140/gt.2016.20.3431
Classification : 17B37, 57M25, 81R50
Keywords: categorification, link homology, spectral sequence

Rose, David 1 ; Wedrich, Paul 2

1 University of North Carolina at Chapel Hill, Mathematics Department, 120 E Cameron Avenue, CB #3250, 329 Phillips Hall, Chapel Hill, NC 27599, United States
2 Department of Mathematics, Imperial College London, London, SW7 2AZ, United Kingdom
@article{GT_2016_20_6_a5,
     author = {Rose, David and Wedrich, Paul},
     title = {Deformations of colored {\ensuremath{\mathfrak{s}}\ensuremath{\mathfrak{l}}N} link homologies via foams},
     journal = {Geometry & topology},
     pages = {3431--3517},
     publisher = {mathdoc},
     volume = {20},
     number = {6},
     year = {2016},
     doi = {10.2140/gt.2016.20.3431},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2016.20.3431/}
}
TY  - JOUR
AU  - Rose, David
AU  - Wedrich, Paul
TI  - Deformations of colored đ”°đ”©N link homologies via foams
JO  - Geometry & topology
PY  - 2016
SP  - 3431
EP  - 3517
VL  - 20
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2016.20.3431/
DO  - 10.2140/gt.2016.20.3431
ID  - GT_2016_20_6_a5
ER  - 
%0 Journal Article
%A Rose, David
%A Wedrich, Paul
%T Deformations of colored đ”°đ”©N link homologies via foams
%J Geometry & topology
%D 2016
%P 3431-3517
%V 20
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2016.20.3431/
%R 10.2140/gt.2016.20.3431
%F GT_2016_20_6_a5
Rose, David; Wedrich, Paul. Deformations of colored đ”°đ”©N link homologies via foams. Geometry & topology, Tome 20 (2016) no. 6, pp. 3431-3517. doi : 10.2140/gt.2016.20.3431. http://geodesic.mathdoc.fr/articles/10.2140/gt.2016.20.3431/

[1] D Bar-Natan, Khovanov’s homology for tangles and cobordisms, Geom. Topol. 9 (2005) 1443 | DOI

[2] D Bar-Natan, S Morrison, The Karoubi envelope and Lee’s degeneration of Khovanov homology, preprint (2009)

[3] H Becker, Khovanov–Rozansky homology via Cohen–Macaulay approximations and Soergel bimodules, preprint (2011)

[4] N Carqueville, D Murfet, Computing Khovanov–Rozansky homology and defect fusion, Algebr. Geom. Topol. 14 (2014) 489 | DOI

[5] N Carqueville, D Murfet, Adjunctions and defects in Landau–Ginzburg models, Adv. Math. 289 (2016) 480 | DOI

[6] S Cautis, Clasp technology to knot homology via the affine Grassmannian, Math. Ann. 363 (2015) 1053 | DOI

[7] S Cautis, J Kamnitzer, A Licata, Categorical geometric skew Howe duality, Invent. Math. 180 (2010) 111 | DOI

[8] S Cautis, J Kamnitzer, S Morrison, Webs and quantum skew Howe duality, Math. Ann. 360 (2014) 351 | DOI

[9] J Chuang, R Rouquier, Derived equivalences for symmetric groups and sl2–categorification, Ann. of Math. 167 (2008) 245 | DOI

[10] N M Dunfield, S Gukov, J Rasmussen, The superpolynomial for knot homologies, Experiment. Math. 15 (2006) 129

[11] T Dyckerhoff, D Murfet, Pushing forward matrix factorizations, Duke Math. J. 162 (2013) 1249 | DOI

[12] B Gornik, Note on Khovanov link cohomology, preprint (2004)

[13] E Gorsky, S Gukov, M Stoơić, Quadruply-graded colored homology of knots, preprint (2013)

[14] S Gukov, M Stoơić, Homological algebra of knots and BPS states, from: "Proceedings of the Freedman Fest" (editors R Kirby, V Krushkal, Z Wang), Geom. Topol. Monogr. 18 (2012) 309 | DOI

[15] S Gukov, J Walcher, Matrix factorizations and Kauffman homology, preprint (2005)

[16] M Khovanov, A categorification of the Jones polynomial, Duke Math. J. 101 (2000) 359 | DOI

[17] M Khovanov, Link homology and Frobenius extensions, Fund. Math. 190 (2006) 179 | DOI

[18] M Khovanov, A D Lauda, A diagrammatic approach to categorification of quantum groups, I, Represent. Theory 13 (2009) 309 | DOI

[19] M Khovanov, A D Lauda, A categorification of quantum sl(n), Quantum Topol. 1 (2010) 1 | DOI

[20] M Khovanov, A D Lauda, A diagrammatic approach to categorification of quantum groups, II, Trans. Amer. Math. Soc. 363 (2011) 2685 | DOI

[21] M Khovanov, A D Lauda, M Mackaay, M Stoơić, Extended graphical calculus for categorified quantum sl(2), 1029, Amer. Math. Soc. (2012) | DOI

[22] M Khovanov, L Rozansky, Matrix factorizations and link homology, Fund. Math. 199 (2008) 1 | DOI

[23] D Krasner, Equivariant sl(n)–link homology, Algebr. Geom. Topol. 10 (2010) 1 | DOI

[24] A D Lauda, A categorification of quantum sl(2), Adv. Math. 225 (2010) 3327 | DOI

[25] A D Lauda, An introduction to diagrammatic algebra and categorified quantum sl2, Bull. Inst. Math. Acad. Sin. 7 (2012) 165

[26] E S Lee, An endomorphism of the Khovanov invariant, Adv. Math. 197 (2005) 554 | DOI

[27] L Lewark, Rasmussen’s spectral sequences and the slN–concordance invariants, Adv. Math. 260 (2014) 59 | DOI

[28] A Lobb, A slice genus lower bound from sl(n) Khovanov–Rozansky homology, Adv. Math. 222 (2009) 1220 | DOI

[29] A Lobb, A note on Gornik’s perturbation of Khovanov–Rozansky homology, Algebr. Geom. Topol. 12 (2012) 293 | DOI

[30] G Lusztig, Introduction to quantum groups, 110, BirkhÀuser (1993) | DOI

[31] I G Macdonald, Symmetric functions and Hall polynomials, Clarendon (1995)

[32] M Mackaay, The slN–web algebras and dual canonical bases, J. Algebra 409 (2014) 54 | DOI

[33] M Mackaay, W Pan, D Tubbenhauer, The sl3–web algebra, Math. Z. 277 (2014) 401 | DOI

[34] M Mackaay, P Vaz, The universal sl3–link homology, Algebr. Geom. Topol. 7 (2007) 1135 | DOI

[35] M Mackaay, Y Yonezawa, sl(N)–web categories, preprint (2013)

[36] H Queffelec, D E V Rose, The sln foam 2–category : a combinatorial formulation of Khovanov–Rozansky homology via categorical skew Howe duality, preprint (2014)

[37] J Rasmussen, Khovanov homology and the slice genus, Invent. Math. 182 (2010) 419 | DOI

[38] J Rasmussen, Some differentials on Khovanov–Rozansky homology, Geom. Topol. 19 (2015) 3031 | DOI

[39] R Rouquier, 2–Kac–Moody algebras, preprint (2008)

[40] B Webster, Khovanov–Rozansky homology via a canopolis formalism, Algebr. Geom. Topol. 7 (2007) 673 | DOI

[41] H Wu, Generic deformations of the colored sl(N)–homology for links, Algebr. Geom. Topol. 11 (2011) 2037 | DOI

[42] H Wu, Equivariant colored sl(N)–homology for links, J. Knot Theory Ramifications 21 (2012) | DOI

[43] H Wu, A colored sl(N) homology for links in S3, Dissertationes Math. (Rozprawy Mat.) 499 (2014) 217 | DOI

[44] Y Yonezawa, Quantum (sln,∧V n) link invariant and matrix factorizations, Nagoya Math. J. 204 (2011) 69

Cité par Sources :