Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We prove a conjectured decomposition of deformed link homology, as well as an extension to the case of colored links, generalizing results of Lee, Gornik, and Wu. To this end, we use foam technology to give a completely combinatorial construction of Wuâs deformed colored link homologies. By studying the underlying deformed higher representation-theoretic structures and generalizing the Karoubi envelope approach of Bar-Natan and Morrison, we explicitly compute the deformed invariants in terms of undeformed type A link homologies of lower rank and color.
Rose, David 1 ; Wedrich, Paul 2
@article{GT_2016_20_6_a5, author = {Rose, David and Wedrich, Paul}, title = {Deformations of colored {\ensuremath{\mathfrak{s}}\ensuremath{\mathfrak{l}}N} link homologies via foams}, journal = {Geometry & topology}, pages = {3431--3517}, publisher = {mathdoc}, volume = {20}, number = {6}, year = {2016}, doi = {10.2140/gt.2016.20.3431}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2016.20.3431/} }
TY - JOUR AU - Rose, David AU - Wedrich, Paul TI - Deformations of colored đ°đ©N link homologies via foams JO - Geometry & topology PY - 2016 SP - 3431 EP - 3517 VL - 20 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2016.20.3431/ DO - 10.2140/gt.2016.20.3431 ID - GT_2016_20_6_a5 ER -
Rose, David; Wedrich, Paul. Deformations of colored đ°đ©N link homologies via foams. Geometry & topology, Tome 20 (2016) no. 6, pp. 3431-3517. doi : 10.2140/gt.2016.20.3431. http://geodesic.mathdoc.fr/articles/10.2140/gt.2016.20.3431/
[1] Khovanovâs homology for tangles and cobordisms, Geom. Topol. 9 (2005) 1443 | DOI
,[2] The Karoubi envelope and Leeâs degeneration of Khovanov homology, preprint (2009)
, ,[3] KhovanovâRozansky homology via CohenâMacaulay approximations and Soergel bimodules, preprint (2011)
,[4] Computing KhovanovâRozansky homology and defect fusion, Algebr. Geom. Topol. 14 (2014) 489 | DOI
, ,[5] Adjunctions and defects in LandauâGinzburg models, Adv. Math. 289 (2016) 480 | DOI
, ,[6] Clasp technology to knot homology via the affine Grassmannian, Math. Ann. 363 (2015) 1053 | DOI
,[7] Categorical geometric skew Howe duality, Invent. Math. 180 (2010) 111 | DOI
, , ,[8] Webs and quantum skew Howe duality, Math. Ann. 360 (2014) 351 | DOI
, , ,[9] Derived equivalences for symmetric groups and sl2âcategorification, Ann. of Math. 167 (2008) 245 | DOI
, ,[10] The superpolynomial for knot homologies, Experiment. Math. 15 (2006) 129
, , ,[11] Pushing forward matrix factorizations, Duke Math. J. 162 (2013) 1249 | DOI
, ,[12] Note on Khovanov link cohomology, preprint (2004)
,[13] Quadruply-graded colored homology of knots, preprint (2013)
, , ,[14] Homological algebra of knots and BPS states, from: "Proceedings of the Freedman Fest" (editors R Kirby, V Krushkal, Z Wang), Geom. Topol. Monogr. 18 (2012) 309 | DOI
, ,[15] Matrix factorizations and Kauffman homology, preprint (2005)
, ,[16] A categorification of the Jones polynomial, Duke Math. J. 101 (2000) 359 | DOI
,[17] Link homology and Frobenius extensions, Fund. Math. 190 (2006) 179 | DOI
,[18] A diagrammatic approach to categorification of quantum groups, I, Represent. Theory 13 (2009) 309 | DOI
, ,[19] A categorification of quantum sl(n), Quantum Topol. 1 (2010) 1 | DOI
, ,[20] A diagrammatic approach to categorification of quantum groups, II, Trans. Amer. Math. Soc. 363 (2011) 2685 | DOI
, ,[21] Extended graphical calculus for categorified quantum sl(2), 1029, Amer. Math. Soc. (2012) | DOI
, , , ,[22] Matrix factorizations and link homology, Fund. Math. 199 (2008) 1 | DOI
, ,[23] Equivariant sl(n)âlink homology, Algebr. Geom. Topol. 10 (2010) 1 | DOI
,[24] A categorification of quantum sl(2), Adv. Math. 225 (2010) 3327 | DOI
,[25] An introduction to diagrammatic algebra and categorified quantum sl2, Bull. Inst. Math. Acad. Sin. 7 (2012) 165
,[26] An endomorphism of the Khovanov invariant, Adv. Math. 197 (2005) 554 | DOI
,[27] Rasmussenâs spectral sequences and the slNâconcordance invariants, Adv. Math. 260 (2014) 59 | DOI
,[28] A slice genus lower bound from sl(n) KhovanovâRozansky homology, Adv. Math. 222 (2009) 1220 | DOI
,[29] A note on Gornikâs perturbation of KhovanovâRozansky homology, Algebr. Geom. Topol. 12 (2012) 293 | DOI
,[30] Introduction to quantum groups, 110, BirkhÀuser (1993) | DOI
,[31] Symmetric functions and Hall polynomials, Clarendon (1995)
,[32] The slNâweb algebras and dual canonical bases, J. Algebra 409 (2014) 54 | DOI
,[33] The sl3âweb algebra, Math. Z. 277 (2014) 401 | DOI
, , ,[34] The universal sl3âlink homology, Algebr. Geom. Topol. 7 (2007) 1135 | DOI
, ,[35] sl(N)âweb categories, preprint (2013)
, ,[36] The sln foam 2âcategory : a combinatorial formulation of KhovanovâRozansky homology via categorical skew Howe duality, preprint (2014)
, ,[37] Khovanov homology and the slice genus, Invent. Math. 182 (2010) 419 | DOI
,[38] Some differentials on KhovanovâRozansky homology, Geom. Topol. 19 (2015) 3031 | DOI
,[39] 2âKacâMoody algebras, preprint (2008)
,[40] KhovanovâRozansky homology via a canopolis formalism, Algebr. Geom. Topol. 7 (2007) 673 | DOI
,[41] Generic deformations of the colored sl(N)âhomology for links, Algebr. Geom. Topol. 11 (2011) 2037 | DOI
,[42] Equivariant colored sl(N)âhomology for links, J. Knot Theory Ramifications 21 (2012) | DOI
,[43] A colored sl(N) homology for links in S3, Dissertationes Math. (Rozprawy Mat.) 499 (2014) 217 | DOI
,[44] Quantum (sln,â§V n) link invariant and matrix factorizations, Nagoya Math. J. 204 (2011) 69
,Cité par Sources :