Persistent homology and Floer–Novikov theory
Geometry & topology, Tome 20 (2016) no. 6, pp. 3333-3430.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We construct “barcodes” for the chain complexes over Novikov rings that arise in Novikov’s Morse theory for closed one-forms and in Floer theory on not-necessarily-monotone symplectic manifolds. In the case of classical Morse theory these coincide with the barcodes familiar from persistent homology. Our barcodes completely characterize the filtered chain homotopy type of the chain complex; in particular they subsume in a natural way previous filtered Floer-theoretic invariants such as boundary depth and torsion exponents, and also reflect information about spectral invariants. Moreover, we prove a continuity result which is a natural analogue both of the classical bottleneck stability theorem in persistent homology and of standard continuity results for spectral invariants, and we use this to prove a C0–robustness result for the fixed points of Hamiltonian diffeomorphisms. Our approach, which is rather different from the standard methods of persistent homology, is based on a nonarchimedean singular value decomposition for the boundary operator of the chain complex.

DOI : 10.2140/gt.2016.20.3333
Classification : 53D40, 55U15
Keywords: persistence module, barcode, Floer homology, Novikov ring, nonarchimedean singular value decomposition

Usher, Michael 1 ; Zhang, Jun 2

1 Department of Mathematics, University of Georgia, Athens, GA 30602, United States
2 School of Mathematical Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
@article{GT_2016_20_6_a4,
     author = {Usher, Michael and Zhang, Jun},
     title = {Persistent homology and {Floer{\textendash}Novikov} theory},
     journal = {Geometry & topology},
     pages = {3333--3430},
     publisher = {mathdoc},
     volume = {20},
     number = {6},
     year = {2016},
     doi = {10.2140/gt.2016.20.3333},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2016.20.3333/}
}
TY  - JOUR
AU  - Usher, Michael
AU  - Zhang, Jun
TI  - Persistent homology and Floer–Novikov theory
JO  - Geometry & topology
PY  - 2016
SP  - 3333
EP  - 3430
VL  - 20
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2016.20.3333/
DO  - 10.2140/gt.2016.20.3333
ID  - GT_2016_20_6_a4
ER  - 
%0 Journal Article
%A Usher, Michael
%A Zhang, Jun
%T Persistent homology and Floer–Novikov theory
%J Geometry & topology
%D 2016
%P 3333-3430
%V 20
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2016.20.3333/
%R 10.2140/gt.2016.20.3333
%F GT_2016_20_6_a4
Usher, Michael; Zhang, Jun. Persistent homology and Floer–Novikov theory. Geometry & topology, Tome 20 (2016) no. 6, pp. 3333-3430. doi : 10.2140/gt.2016.20.3333. http://geodesic.mathdoc.fr/articles/10.2140/gt.2016.20.3333/

[1] M Audin, M Damian, Morse theory and Floer homology, Springer (2014) | DOI

[2] S A Barannikov, The framed Morse complex and its invariants, from: "Singularities and bifurcations" (editor V I Arnol’d), Adv. Soviet Math. 21, Amer. Math. Soc. (1994) 93

[3] U Bauer, M Lesnick, Induced matchings and the algebraic stability of persistence barcodes, J. Comput. Geom. 6 (2015) 162 | DOI

[4] P Biran, O Cornea, Rigidity and uniruling for Lagrangian submanifolds, Geom. Topol. 13 (2009) 2881 | DOI

[5] D Burghelea, T K Dey, Topological persistence for circle-valued maps, Discrete Comput. Geom. 50 (2013) 69 | DOI

[6] D Burghelea, S Haller, Topology of angle valued maps, bar codes and Jordan blocks, preprint (2013)

[7] G Carlsson, Topology and data, Bull. Amer. Math. Soc. 46 (2009) 255 | DOI

[8] F Chazal, D Cohen-Steiner, M Glisse, L Guibas, S Oudot, Proximity of persistence modules and their diagrams, from: "Computational geometry", ACM (2009) 237 | DOI

[9] F Chazal, V De Silva, M Glisse, S Oudot, The structure and stability of persistence modules, preprint (2012)

[10] D Cohen-Steiner, H Edelsbrunner, J Harer, Stability of persistence diagrams, Discrete Comput. Geom. 37 (2007) 103 | DOI

[11] O Cornea, A Ranicki, Rigidity and gluing for Morse and Novikov complexes, J. Eur. Math. Soc. 5 (2003) 343 | DOI

[12] W Crawley-Boevey, Decomposition of pointwise finite-dimensional persistence modules, J. Algebra Appl. 14 (2015) | DOI

[13] M Entov, L Polterovich, Calabi quasimorphism and quantum homology, Int. Math. Res. Not. 2003 (2003) 1635 | DOI

[14] M Farber, Topology of closed one-forms, 108, Amer. Math. Soc. (2004) | DOI

[15] A Floer, An instanton-invariant for 3–manifolds, Comm. Math. Phys. 118 (1988) 215

[16] A Floer, Morse theory for Lagrangian intersections, J. Differential Geom. 28 (1988) 513

[17] A Floer, Symplectic fixed points and holomorphic spheres, Comm. Math. Phys. 120 (1989) 575

[18] A Floer, H Hofer, Symplectic homology, I : Open sets in Cn, Math. Z. 215 (1994) 37 | DOI

[19] U Frauenfelder, The Arnold–Givental conjecture and moment Floer homology, Int. Math. Res. Not. 2004 (2004) 2179 | DOI

[20] K Fukaya, Y G Oh, H Ohta, K Ono, Lagrangian intersection Floer theory : anomaly and obstruction, Volume I, 46, Amer. Math. Soc. (2009)

[21] K Fukaya, Y G Oh, H Ohta, K Ono, Displacement of polydisks and Lagrangian Floer theory, J. Symplectic Geom. 11 (2013) 231 | DOI

[22] K Fukaya, K Ono, Arnold conjecture and Gromov–Witten invariant, Topology 38 (1999) 933 | DOI

[23] R Ghrist, Barcodes: the persistent topology of data, Bull. Amer. Math. Soc. 45 (2008) 61 | DOI

[24] H Hofer, D A Salamon, Floer homology and Novikov rings, from: "The Floer memorial volume" (editors H Hofer, C H Taubes, A Weinstein, E Zehnder), Progr. Math. 133, Birkhäuser (1995) 483 | DOI

[25] H Hofer, E Zehnder, Symplectic invariants and Hamiltonian dynamics, Birkhäuser (1994) | DOI

[26] V Humilière, R Leclercq, S Seyfaddini, Coisotropic rigidity and C0–symplectic geometry, Duke Math. J. 164 (2015) 767 | DOI

[27] K S Kedlaya, p–adic differential equations, 125, Cambridge Univ. Press (2010) | DOI

[28] D Le Peutrec, F Nier, C Viterbo, Precise Arrhenius law for p–forms : the Witten Laplacian and Morse–Barannikov complex, Ann. Henri Poincaré 14 (2013) 567 | DOI

[29] Y J Lee, Reidemeister torsion in Floer–Novikov theory and counting pseudo-holomorphic tori, I, J. Symplectic Geom. 3 (2005) 221

[30] G Liu, G Tian, Floer homology and Arnold conjecture, J. Differential Geom. 49 (1998) 1

[31] A F Monna, T A Springer, Sur la structure des espaces de Banach non-archimédiens, Nederl. Akad. Wetensch. Proc. Ser. A 27 (1965) 602 | DOI

[32] M Morse, The calculus of variations in the large, 18, Amer. Math. Soc. (1934)

[33] S P Novikov, Multivalued functions and functionals : an analogue of the Morse theory, Dokl. Akad. Nauk SSSR 260 (1981) 31

[34] Y G Oh, Construction of spectral invariants of Hamiltonian paths on closed symplectic manifolds, from: "The breadth of symplectic and Poisson geometry" (editors J E Marsden, T S Ratiu), Progr. Math. 232, Birkhäuser (2005) 525 | DOI

[35] J Pardon, An algebraic approach to virtual fundamental cycles on moduli spaces of pseudo-holomorphic curves, Geom. Topol. 20 (2016) 779 | DOI

[36] L Polterovich, E Shelukhin, Autonomous Hamiltonian flows, Hofer’s geometry and persistence modules, Selecta Math. 22 (2016) 227 | DOI

[37] J Robbin, D Salamon, The Maslov index for paths, Topology 32 (1993) 827 | DOI

[38] D Salamon, Lectures on Floer homology, lecture notes (1997)

[39] M Schwarz, Morse homology, 111, Birkhäuser (1993) | DOI

[40] M Schwarz, On the action spectrum for closed symplectically aspherical manifolds, Pacific J. Math. 193 (2000) 419 | DOI

[41] V De Silva, D Morozov, M Vejdemo-Johansson, Dualities in persistent (co)homology, Inverse Problems 27 (2011) 1 | DOI

[42] M Usher, Spectral numbers in Floer theories, Compos. Math. 144 (2008) 1581 | DOI

[43] M Usher, Duality in filtered Floer–Novikov complexes, J. Topol. Anal. 2 (2010) 233 | DOI

[44] M Usher, Boundary depth in Floer theory and its applications to Hamiltonian dynamics and coisotropic submanifolds, Israel J. Math. 184 (2011) 1 | DOI

[45] M Usher, Hofer’s metrics and boundary depth, Ann. Sci. Éc. Norm. Supér. 46 (2013) 57

[46] A Zomorodian, G Carlsson, Computing persistent homology, Discrete Comput. Geom. 33 (2005) 249 | DOI

Cité par Sources :