Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
This paper starts with an exposition of descent-theoretic techniques in the study of Picard groups of –ring spectra, which naturally lead to the study of Picard spectra. We then develop tools for the efficient and explicit determination of differentials in the associated descent spectral sequences for the Picard spectra thus obtained. As a major application, we calculate the Picard groups of the periodic spectrum of topological modular forms and the nonperiodic and nonconnective . We find that is cyclic of order , generated by the suspension (a result originally due to Hopkins), while . In particular, we show that there exists an invertible –module which is not equivalent to a suspension of .
Mathew, Akhil 1 ; Stojanoska, Vesna 2
@article{GT_2016_20_6_a2, author = {Mathew, Akhil and Stojanoska, Vesna}, title = {The {Picard} group of topological modular forms via descent theory}, journal = {Geometry & topology}, pages = {3133--3217}, publisher = {mathdoc}, volume = {20}, number = {6}, year = {2016}, doi = {10.2140/gt.2016.20.3133}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2016.20.3133/} }
TY - JOUR AU - Mathew, Akhil AU - Stojanoska, Vesna TI - The Picard group of topological modular forms via descent theory JO - Geometry & topology PY - 2016 SP - 3133 EP - 3217 VL - 20 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2016.20.3133/ DO - 10.2140/gt.2016.20.3133 ID - GT_2016_20_6_a2 ER -
%0 Journal Article %A Mathew, Akhil %A Stojanoska, Vesna %T The Picard group of topological modular forms via descent theory %J Geometry & topology %D 2016 %P 3133-3217 %V 20 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2016.20.3133/ %R 10.2140/gt.2016.20.3133 %F GT_2016_20_6_a2
Mathew, Akhil; Stojanoska, Vesna. The Picard group of topological modular forms via descent theory. Geometry & topology, Tome 20 (2016) no. 6, pp. 3133-3217. doi : 10.2140/gt.2016.20.3133. http://geodesic.mathdoc.fr/articles/10.2140/gt.2016.20.3133/
[1] Uniqueness of BSO, Math. Proc. Cambridge Philos. Soc. 80 (1976) 475 | DOI
, ,[2] Units of ring spectra, orientations and Thom spectra via rigid infinite loop space theory, J. Topol. 7 (2014) 1077 | DOI
, , , , ,[3] A∞–obstruction theory and the strict associativity of E∕I, preprint (2004)
,[4] Invertible modules for commutative S–algebras with residue fields, Manuscripta Math. 118 (2005) 99 | DOI
, ,[5] Tensor triangular geometry, from: "Proceedings of the International Congress of Mathematicians" (editors R Bhatia, A Pal, G Rangarajan, V Srinivas, M Vanninathan), Hindustan Book Agency (2010) 85
,[6] Computation of the homotopy of the spectrum tmf, from: "Groups, homotopy and configuration spaces" (editors N Iwase, T Kohno, R Levi, D Tamaki, J Wu), Geom. Topol. Monogr. 13 (2008) 11 | DOI
,[7] Congruences between modular forms given by the divided β family in homotopy theory, Geom. Topol. 13 (2009) 319 | DOI
,[8] The classification of torsion endo-trivial modules, Ann. of Math. 162 (2005) 823 | DOI
, ,[9] The homology of iterated loop spaces, 533, Springer (1976) | DOI
, , ,[10] Endo-permutation modules over p–groups, II, Ann. of Math. 108 (1978) 317 | DOI
,[11] Les schémas de modules de courbes elliptiques, from: "Modular functions of one variable, II" (editors P Deligne, W Kuyk), Lecture Notes in Math. 349, Springer (1973) 143 | DOI
, ,[12] Splitting homotopy idempotents, from: "Proc. Conf. Categorical Algebra" (editors S Eilenberg, D K Harrison, S Mac Lane, H Röhrl), Springer (1966) 173 | DOI
,[13] Stable homotopy, from: "Proc. Conf. Categorical Algebra" (editors S Eilenberg, D K Harrison, S Mac Lane, H Röhrl), Springer (1966) 121 | DOI
,[14] The Picard group of M1,1, Algebra Number Theory 4 (2010) 87 | DOI
, ,[15] Brauer groups and Galois cohomology of commutative S–algebras, preprint (2016)
, ,[16] Topological modular forms [after Hopkins, Miller and Lurie], Exp. No. 1005, from: "Séminaire Bourbaki 2008/2009", Astérisque 332, Société Mathématique de France (2010) 221
,[17] On Hopkins’ Picard groups for the prime 3 and chromatic level 2, preprint (2012)
, , , ,[18] Completions in algebra and topology, from: "Handbook of algebraic topology" (editor I M James), North-Holland (1995) 255 | DOI
, ,[19] Eléments de géométrie algébrique, IV : Étude locale des schémas et des morphismes de schémas, III, Inst. Hautes Études Sci. Publ. Math. 28 (1966) 5
,[20] Algebraic geometry, 52, Springer (1977) | DOI
,[21] Morava modules and the K(n)–local Picard group, PhD thesis, University of Melbourne (2014)
,[22] K–theory, reality, and duality, J. K-Theory 14 (2014) 526 | DOI
, ,[23] All about Tmf1(3), preprint (2015)
, ,[24] K(1)–local E∞–ring spectra, from: "Topological modular forms" (editors C L Douglas, J Francis, A G Henriques, M A Hill), Math. Surveys Monogr. 201, Amer. Math. Soc. (2014) 287 | DOI
,[25] Generalized group characters and complex oriented cohomology theories, J. Amer. Math. Soc. 13 (2000) 553 | DOI
, , ,[26] Constructions of elements in Picard groups, from: "Topology and representation theory" (editors E M Friedlander, M E Mahowald), Contemp. Math. 158, Amer. Math. Soc. (1994) 89 | DOI
, , ,[27] Invertible spectra in the E(n)–local stable homotopy category, J. London Math. Soc. 60 (1999) 284 | DOI
, ,[28] Twenty-four hours of local cohomology, 87, Amer. Math. Soc. (2007) | DOI
, , , , , , ,[29] Picard groups of some local categories, Publ. Res. Inst. Math. Sci. 43 (2007) 303 | DOI
, ,[30] Arithmetic moduli of elliptic curves, 108, Princeton Univ. Press (1985) | DOI
, ,[31] Galois theory of p–extensions, Springer (2002) | DOI
,[32] The homotopy groups of the spectrum Tmf, master’s thesis, Utrecht University (2012)
,[33] Strictly commutative elements of E∞–spaces, MathOverflow (2013)
,[34] Higher topos theory, 170, Princeton Univ. Press (2009) | DOI
,[35] Chromatic homotopy theory, lecture notes (2010)
,[36] Derived algebraic geometry, IX: Closed immersions, unpublished manuscript (2011)
,[37] Derived algebraic geometry, VII : Spectral schemes, unpublished manuscript (2011)
,[38] Derived algebraic geometry, VIII : Quasi-coherent sheaves and Tannaka duality theorems, unpublished manuscript (2011)
,[39] Higher algebra, unpublished manuscript (2012)
,[40] The Galois group of a stable homotopy theory, Adv. Math. 291 (2016) 403 | DOI
,[41] Residue fields for a class of rational E∞–rings and applications, J. Pure Appl. Algebra 221 (2017) 707 | DOI
,[42] Affineness and chromatic homotopy theory, J. Topol. 8 (2015) 476 | DOI
, ,[43] On a nilpotence conjecture of J P May, J. Topol. 8 (2015) 917 | DOI
, , ,[44] Fibers of partial totalizations of a pointed cosimplicial space, Proc. Amer. Math. Soc. 144 (2016) 445 | DOI
, ,[45] The geometry of iterated loop spaces, 271, Springer (1972) | DOI
,[46] E∞ ring spaces and E∞ ring spectra, 577, Springer (1977) 268 | DOI
,[47] Picard groups, Grothendieck rings, and Burnside rings of categories, Adv. Math. 163 (2001) 1 | DOI
,[48] United elliptic homology, PhD thesis, University of Bonn (2012)
,[49] Introduction to algebraic K–theory, 72, Princeton Univ. Press (1971)
,[50] Cohomology operations and applications in homotopy theory, Harper Row (1968)
, ,[51] Picard groups of moduli problems, from: "Arithmetical Algebraic Geometry" (editor O F G Schilling), Harper Row (1965) 33
,[52] Triangulated categories, 148, Princeton Univ. Press (2001) | DOI
,[53] Cohomology of number fields, 323, Springer (2008) | DOI
, , ,[54] Mod−p right derived functor algebras of the symmetric algebra functor, J. Pure Appl. Algebra 3 (1973) 337 | DOI
,[55] On the cohomology and K–theory of the general linear groups over a finite field, Ann. of Math. 96 (1972) 552 | DOI
,[56] Nilpotence and periodicity in stable homotopy theory, 128, Princeton Univ. Press (1992)
,[57] Notes on the Hopkins–Miller theorem, from: "Homotopy theory via algebraic geometry and group representations" (editors M Mahowald, S Priddy), Contemp. Math. 220, Amer. Math. Soc. (1998) 313 | DOI
,[58] Categorical homotopy theory, 24, Cambridge Univ. Press (2014) | DOI
,[59] Galois extensions of structured ring spectra, Stably dualizable groups, 898, Amer. Math. Soc. (2008) | DOI
,[60] Categories and cohomology theories, Topology 13 (1974) 293 | DOI
,[61] Cohomologie modulo 2 des complexes d’Eilenberg–MacLane, Comment. Math. Helv. 27 (1953) 198 | DOI
,[62] The arithmetic of elliptic curves, 106, Springer (1986) | DOI
,[63] Duality for topological modular forms, Doc. Math. 17 (2012) 271
,[64] Calculating descent for 2–primary topological modular forms, from: "An alpine expedition through algebraic topology" (editors C Ausoni, K Hess, B Johnson, W Lück, J Scherer), Contemp. Math. 617, Amer. Math. Soc. (2014) 241 | DOI
,Cité par Sources :