Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We show that any smooth, closed, oriented, connected –manifold can be trisected into three copies of , intersecting pairwise in –dimensional handlebodies, with triple intersection a closed –dimensional surface. Such a trisection is unique up to a natural stabilization operation. This is analogous to the existence, and uniqueness up to stabilization, of Heegaard splittings of –manifolds. A trisection of a –manifold arises from a Morse –function and the obvious trisection of , in much the same way that a Heegaard splitting of a –manifold arises from a Morse function and the obvious bisection of .
Gay, David 1 ; Kirby, Robion 2
@article{GT_2016_20_6_a1, author = {Gay, David and Kirby, Robion}, title = {Trisecting 4{\textendash}manifolds}, journal = {Geometry & topology}, pages = {3097--3132}, publisher = {mathdoc}, volume = {20}, number = {6}, year = {2016}, doi = {10.2140/gt.2016.20.3097}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2016.20.3097/} }
Gay, David; Kirby, Robion. Trisecting 4–manifolds. Geometry & topology, Tome 20 (2016) no. 6, pp. 3097-3132. doi : 10.2140/gt.2016.20.3097. http://geodesic.mathdoc.fr/articles/10.2140/gt.2016.20.3097/
[1] On Markov’s theorem, J. Knot Theory Ramifications 11 (2002) 295 | DOI
, ,[2] On the Maslov index, Comm. Pure Appl. Math. 47 (1994) 121 | DOI
, , ,[3] La stratification naturelle des espaces de fonctions différentiables réelles et le théorème de la pseudo-isotopie, Inst. Hautes Études Sci. Publ. Math. 39 (1970) 5
,[4] Indefinite Morse 2–functions : broken fibrations and generalizations, Geom. Topol. 19 (2015) 2465 | DOI
, ,[5] Topology and combinatorics of 3–manifolds, 1599, Springer (1995) | DOI
,[6] A note on 4–dimensional handlebodies, Bull. Soc. Math. France 100 (1972) 337
, ,[7] Wrinkled fibrations on near-symplectic manifolds, Geom. Topol. 13 (2009) 277 | DOI
,[8] Holomorphic triangles and invariants for smooth four-manifolds, Adv. Math. 202 (2006) 326 | DOI
, ,[9] Zur dreidimensionalen Topologie, Abh. Math. Sem. Univ. Hamburg 9 (1933) 189 | DOI
,[10] Lectures on the topology of 3–manifolds, Walter de Gruyter (1999) | DOI
,[11] Three-dimensional manifolds and their Heegaard diagrams, Trans. Amer. Math. Soc. 35 (1933) 88 | DOI
,[12] Heegaard–Zerlegungen der 3–Sphäre, Topology 7 (1968) 195 | DOI
,[13] Non-additivity of the signature, Invent. Math. 7 (1969) 269 | DOI
,Cité par Sources :