Trisecting 4–manifolds
Geometry & topology, Tome 20 (2016) no. 6, pp. 3097-3132.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We show that any smooth, closed, oriented, connected 4–manifold can be trisected into three copies of k(S1 × B3), intersecting pairwise in 3–dimensional handlebodies, with triple intersection a closed 2–dimensional surface. Such a trisection is unique up to a natural stabilization operation. This is analogous to the existence, and uniqueness up to stabilization, of Heegaard splittings of 3–manifolds. A trisection of a 4–manifold X arises from a Morse 2–function G: X B2 and the obvious trisection of B2, in much the same way that a Heegaard splitting of a 3–manifold Y arises from a Morse function g: Y B1 and the obvious bisection of B1.

DOI : 10.2140/gt.2016.20.3097
Classification : 57M50, 57M99, 57R45, 57R65
Keywords: 4-manifold, trisection, Heegaard splitting, Heegaard triple, Morse 2-function

Gay, David 1 ; Kirby, Robion 2

1 Euclid Lab, 160 Milledge Terrace, Athens, GA 30606, United States, Department of Mathematics, University of Georgia, Athens, GA 30602, United States
2 Department of Mathematics, University of California, Berkeley, Berkeley, CA 94720-3840, United States
@article{GT_2016_20_6_a1,
     author = {Gay, David and Kirby, Robion},
     title = {Trisecting 4{\textendash}manifolds},
     journal = {Geometry & topology},
     pages = {3097--3132},
     publisher = {mathdoc},
     volume = {20},
     number = {6},
     year = {2016},
     doi = {10.2140/gt.2016.20.3097},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2016.20.3097/}
}
TY  - JOUR
AU  - Gay, David
AU  - Kirby, Robion
TI  - Trisecting 4–manifolds
JO  - Geometry & topology
PY  - 2016
SP  - 3097
EP  - 3132
VL  - 20
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2016.20.3097/
DO  - 10.2140/gt.2016.20.3097
ID  - GT_2016_20_6_a1
ER  - 
%0 Journal Article
%A Gay, David
%A Kirby, Robion
%T Trisecting 4–manifolds
%J Geometry & topology
%D 2016
%P 3097-3132
%V 20
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2016.20.3097/
%R 10.2140/gt.2016.20.3097
%F GT_2016_20_6_a1
Gay, David; Kirby, Robion. Trisecting 4–manifolds. Geometry & topology, Tome 20 (2016) no. 6, pp. 3097-3132. doi : 10.2140/gt.2016.20.3097. http://geodesic.mathdoc.fr/articles/10.2140/gt.2016.20.3097/

[1] J S Birman, W W Menasco, On Markov’s theorem, J. Knot Theory Ramifications 11 (2002) 295 | DOI

[2] S E Cappell, R Lee, E Y Miller, On the Maslov index, Comm. Pure Appl. Math. 47 (1994) 121 | DOI

[3] J Cerf, La stratification naturelle des espaces de fonctions différentiables réelles et le théorème de la pseudo-isotopie, Inst. Hautes Études Sci. Publ. Math. 39 (1970) 5

[4] D T Gay, R Kirby, Indefinite Morse 2–functions : broken fibrations and generalizations, Geom. Topol. 19 (2015) 2465 | DOI

[5] K Johannson, Topology and combinatorics of 3–manifolds, 1599, Springer (1995) | DOI

[6] F Laudenbach, V Poénaru, A note on 4–dimensional handlebodies, Bull. Soc. Math. France 100 (1972) 337

[7] Y Lekili, Wrinkled fibrations on near-symplectic manifolds, Geom. Topol. 13 (2009) 277 | DOI

[8] P Ozsváth, Z Szabó, Holomorphic triangles and invariants for smooth four-manifolds, Adv. Math. 202 (2006) 326 | DOI

[9] K Reidemeister, Zur dreidimensionalen Topologie, Abh. Math. Sem. Univ. Hamburg 9 (1933) 189 | DOI

[10] N Saveliev, Lectures on the topology of 3–manifolds, Walter de Gruyter (1999) | DOI

[11] J Singer, Three-dimensional manifolds and their Heegaard diagrams, Trans. Amer. Math. Soc. 35 (1933) 88 | DOI

[12] F Waldhausen, Heegaard–Zerlegungen der 3–Sphäre, Topology 7 (1968) 195 | DOI

[13] C T C Wall, Non-additivity of the signature, Invent. Math. 7 (1969) 269 | DOI

Cité par Sources :