Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We show that for every nonelementary representation of a surface group into there is a Riemann surface structure such that the Higgs bundle associated to the representation lies outside the discriminant locus of the Hitchin fibration.
Wentworth, Richard 1 ; Wolf, Michael 2
@article{GT_2016_20_5_a8, author = {Wentworth, Richard and Wolf, Michael}, title = {Surface group representations to {SL(2,} {\ensuremath{\mathbb{C}})} and {Higgs} bundles with smooth spectral data}, journal = {Geometry & topology}, pages = {3019--3032}, publisher = {mathdoc}, volume = {20}, number = {5}, year = {2016}, doi = {10.2140/gt.2016.20.3019}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2016.20.3019/} }
TY - JOUR AU - Wentworth, Richard AU - Wolf, Michael TI - Surface group representations to SL(2, ℂ) and Higgs bundles with smooth spectral data JO - Geometry & topology PY - 2016 SP - 3019 EP - 3032 VL - 20 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2016.20.3019/ DO - 10.2140/gt.2016.20.3019 ID - GT_2016_20_5_a8 ER -
%0 Journal Article %A Wentworth, Richard %A Wolf, Michael %T Surface group representations to SL(2, ℂ) and Higgs bundles with smooth spectral data %J Geometry & topology %D 2016 %P 3019-3032 %V 20 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2016.20.3019/ %R 10.2140/gt.2016.20.3019 %F GT_2016_20_5_a8
Wentworth, Richard; Wolf, Michael. Surface group representations to SL(2, ℂ) and Higgs bundles with smooth spectral data. Geometry & topology, Tome 20 (2016) no. 5, pp. 3019-3032. doi : 10.2140/gt.2016.20.3019. http://geodesic.mathdoc.fr/articles/10.2140/gt.2016.20.3019/
[1] Bouts des variétés hyperboliques de dimension 3, Ann. of Math. 124 (1986) 71 | DOI
,[2] Flat G–bundles with canonical metrics, J. Differential Geom. 28 (1988) 361
,[3] Group actions on R–trees, Proc. London Math. Soc. 55 (1987) 571 | DOI
, ,[4] Varieties of group representations and splittings of 3–manifolds, Ann. of Math. 117 (1983) 109 | DOI
, ,[5] On the Morgan–Shalen compactification of the SL(2,C) character varieties of surface groups, Duke Math. J. 101 (2000) 189 | DOI
, , ,[6] Twisted harmonic maps and the self-duality equations, Proc. London Math. Soc. 55 (1987) 127 | DOI
,[7] The monodromy groups of Schwarzian equations on closed Riemann surfaces, Ann. of Math. 151 (2000) 625 | DOI
, , ,[8] Energy of twisted harmonic maps of Riemann surfaces, from: "In the tradition of Ahlfors–Bers, IV" (editors D Canary, J Gilman, J Heinonen, H Masur), Contemp. Math. 432, Amer. Math. Soc. (2007) 45 | DOI
, ,[9] The self-duality equations on a Riemann surface, Proc. London Math. Soc. 55 (1987) 59 | DOI
,[10] Stable bundles and integrable systems, Duke Math. J. 54 (1987) 91 | DOI
,[11] Quadratic differentials and foliations, Acta Math. 142 (1979) 221 | DOI
, ,[12] Equilibrium maps between metric spaces, Calc. Var. Partial Differential Equations 2 (1994) 173 | DOI
,[13] Deformation spaces on geometric structures, from: "Aspects of low-dimensional manifolds" (editors Y Matsumoto, S Morita), Adv. Stud. Pure Math. 20, Kinokuniya (1992) 263
, ,[14] Sobolev spaces and harmonic maps for metric space targets, Comm. Anal. Geom. 1 (1993) 561 | DOI
, ,[15] A canonical metric for Möbius structures and its applications, Math. Z. 216 (1994) 89 | DOI
, ,[16] Varieties of representations of finitely generated groups, 336, Amer. Math. Soc (1985) | DOI
, ,[17] Combinatorics of train tracks, 125, Princeton Univ. Press (1992) | DOI
, ,[18] Minimal immersions of closed Riemann surfaces, Trans. Amer. Math. Soc. 271 (1982) 639 | DOI
, ,[19] Spectral data for G–Higgs bundles, PhD thesis, University of Oxford (2013)
,[20] Existence of incompressible minimal surfaces and the topology of three-dimensional manifolds with nonnegative scalar curvature, Ann. of Math. 110 (1979) 127 | DOI
, ,[21] Energy of harmonic maps and Gardiner’s formula, from: "In the tradition of Ahlfors–Bers, IV" (editors D Canary, J Gilman, J Heinonen, H Masur), Contemp. Math. 432, Amer. Math. Soc. (2007) 221 | DOI
,[22] Harmonic maps from surfaces to R–trees, Math. Z. 218 (1995) 577 | DOI
,[23] On realizing measured foliations via quadratic differentials of harmonic maps to R–trees, J. Anal. Math. 68 (1996) 107 | DOI
,[24] Measured foliations and harmonic maps of surfaces, J. Differential Geom. 49 (1998) 437
,Cité par Sources :