Surface group representations to SL(2, ℂ) and Higgs bundles with smooth spectral data
Geometry & topology, Tome 20 (2016) no. 5, pp. 3019-3032.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We show that for every nonelementary representation of a surface group into SL(2, ) there is a Riemann surface structure such that the Higgs bundle associated to the representation lies outside the discriminant locus of the Hitchin fibration.

DOI : 10.2140/gt.2016.20.3019
Classification : 30F60, 32G15, 53C07, 70S15, 30F40, 53C43
Keywords: spectral curve, Higgs bundle, complex projective structure, R-tree

Wentworth, Richard 1 ; Wolf, Michael 2

1 Department of Mathematics, University of Maryland, College Park, MD 20742, United States
2 Department of Mathematics, Rice University, MS 136, Houston, TX 77005-1892, United States
@article{GT_2016_20_5_a8,
     author = {Wentworth, Richard and Wolf, Michael},
     title = {Surface group representations to {SL(2,} {\ensuremath{\mathbb{C}})} and {Higgs} bundles with smooth spectral data},
     journal = {Geometry & topology},
     pages = {3019--3032},
     publisher = {mathdoc},
     volume = {20},
     number = {5},
     year = {2016},
     doi = {10.2140/gt.2016.20.3019},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2016.20.3019/}
}
TY  - JOUR
AU  - Wentworth, Richard
AU  - Wolf, Michael
TI  - Surface group representations to SL(2, ℂ) and Higgs bundles with smooth spectral data
JO  - Geometry & topology
PY  - 2016
SP  - 3019
EP  - 3032
VL  - 20
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2016.20.3019/
DO  - 10.2140/gt.2016.20.3019
ID  - GT_2016_20_5_a8
ER  - 
%0 Journal Article
%A Wentworth, Richard
%A Wolf, Michael
%T Surface group representations to SL(2, ℂ) and Higgs bundles with smooth spectral data
%J Geometry & topology
%D 2016
%P 3019-3032
%V 20
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2016.20.3019/
%R 10.2140/gt.2016.20.3019
%F GT_2016_20_5_a8
Wentworth, Richard; Wolf, Michael. Surface group representations to SL(2, ℂ) and Higgs bundles with smooth spectral data. Geometry & topology, Tome 20 (2016) no. 5, pp. 3019-3032. doi : 10.2140/gt.2016.20.3019. http://geodesic.mathdoc.fr/articles/10.2140/gt.2016.20.3019/

[1] F Bonahon, Bouts des variétés hyperboliques de dimension 3, Ann. of Math. 124 (1986) 71 | DOI

[2] K Corlette, Flat G–bundles with canonical metrics, J. Differential Geom. 28 (1988) 361

[3] M Culler, J W Morgan, Group actions on R–trees, Proc. London Math. Soc. 55 (1987) 571 | DOI

[4] M Culler, P B Shalen, Varieties of group representations and splittings of 3–manifolds, Ann. of Math. 117 (1983) 109 | DOI

[5] G Daskalopoulos, S Dostoglou, R Wentworth, On the Morgan–Shalen compactification of the SL(2,C) character varieties of surface groups, Duke Math. J. 101 (2000) 189 | DOI

[6] S K Donaldson, Twisted harmonic maps and the self-duality equations, Proc. London Math. Soc. 55 (1987) 127 | DOI

[7] D Gallo, M Kapovich, A Marden, The monodromy groups of Schwarzian equations on closed Riemann surfaces, Ann. of Math. 151 (2000) 625 | DOI

[8] W M Goldman, R A Wentworth, Energy of twisted harmonic maps of Riemann surfaces, from: "In the tradition of Ahlfors–Bers, IV" (editors D Canary, J Gilman, J Heinonen, H Masur), Contemp. Math. 432, Amer. Math. Soc. (2007) 45 | DOI

[9] N J Hitchin, The self-duality equations on a Riemann surface, Proc. London Math. Soc. 55 (1987) 59 | DOI

[10] N Hitchin, Stable bundles and integrable systems, Duke Math. J. 54 (1987) 91 | DOI

[11] J Hubbard, H Masur, Quadratic differentials and foliations, Acta Math. 142 (1979) 221 | DOI

[12] J Jost, Equilibrium maps between metric spaces, Calc. Var. Partial Differential Equations 2 (1994) 173 | DOI

[13] Y Kamishima, S P Tan, Deformation spaces on geometric structures, from: "Aspects of low-dimensional manifolds" (editors Y Matsumoto, S Morita), Adv. Stud. Pure Math. 20, Kinokuniya (1992) 263

[14] N J Korevaar, R M Schoen, Sobolev spaces and harmonic maps for metric space targets, Comm. Anal. Geom. 1 (1993) 561 | DOI

[15] R S Kulkarni, U Pinkall, A canonical metric for Möbius structures and its applications, Math. Z. 216 (1994) 89 | DOI

[16] A Lubotzky, A R Magid, Varieties of representations of finitely generated groups, 336, Amer. Math. Soc (1985) | DOI

[17] R C Penner, J L Harer, Combinatorics of train tracks, 125, Princeton Univ. Press (1992) | DOI

[18] J Sacks, K Uhlenbeck, Minimal immersions of closed Riemann surfaces, Trans. Amer. Math. Soc. 271 (1982) 639 | DOI

[19] L P Schaposnik, Spectral data for G–Higgs bundles, PhD thesis, University of Oxford (2013)

[20] R Schoen, S T Yau, Existence of incompressible minimal surfaces and the topology of three-dimensional manifolds with nonnegative scalar curvature, Ann. of Math. 110 (1979) 127 | DOI

[21] R A Wentworth, Energy of harmonic maps and Gardiner’s formula, from: "In the tradition of Ahlfors–Bers, IV" (editors D Canary, J Gilman, J Heinonen, H Masur), Contemp. Math. 432, Amer. Math. Soc. (2007) 221 | DOI

[22] M Wolf, Harmonic maps from surfaces to R–trees, Math. Z. 218 (1995) 577 | DOI

[23] M Wolf, On realizing measured foliations via quadratic differentials of harmonic maps to R–trees, J. Anal. Math. 68 (1996) 107 | DOI

[24] M Wolf, Measured foliations and harmonic maps of surfaces, J. Differential Geom. 49 (1998) 437

Cité par Sources :