Using simplicial volume to count maximally broken Morse trajectories
Geometry & topology, Tome 20 (2016) no. 5, pp. 2997-3018.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Given a closed Riemannian manifold of dimension n and a Morse–Smale function, there are finitely many n–part broken trajectories of the negative gradient flow. We show that if the manifold admits a hyperbolic metric, then the number of n–part broken trajectories is always at least the hyperbolic volume. The proof combines known theorems in Morse theory with lemmas of Gromov about simplicial volumes of stratified spaces.

DOI : 10.2140/gt.2016.20.2997
Keywords: simplicial volume, Gromov norm, hyperbolic volume, Morse–Smale vector field, Morse broken trajectories

Alpert, Hannah 1

1 Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
@article{GT_2016_20_5_a7,
     author = {Alpert, Hannah},
     title = {Using simplicial volume to count maximally broken {Morse} trajectories},
     journal = {Geometry & topology},
     pages = {2997--3018},
     publisher = {mathdoc},
     volume = {20},
     number = {5},
     year = {2016},
     doi = {10.2140/gt.2016.20.2997},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2016.20.2997/}
}
TY  - JOUR
AU  - Alpert, Hannah
TI  - Using simplicial volume to count maximally broken Morse trajectories
JO  - Geometry & topology
PY  - 2016
SP  - 2997
EP  - 3018
VL  - 20
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2016.20.2997/
DO  - 10.2140/gt.2016.20.2997
ID  - GT_2016_20_5_a7
ER  - 
%0 Journal Article
%A Alpert, Hannah
%T Using simplicial volume to count maximally broken Morse trajectories
%J Geometry & topology
%D 2016
%P 2997-3018
%V 20
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2016.20.2997/
%R 10.2140/gt.2016.20.2997
%F GT_2016_20_5_a7
Alpert, Hannah. Using simplicial volume to count maximally broken Morse trajectories. Geometry & topology, Tome 20 (2016) no. 5, pp. 2997-3018. doi : 10.2140/gt.2016.20.2997. http://geodesic.mathdoc.fr/articles/10.2140/gt.2016.20.2997/

[1] H Alpert, G Katz, Using simplicial volume to count multi-tangent trajectories of traversing vector fields, Geom. Dedicata 180 (2016) 323 | DOI

[2] A Banyaga, D Hurtubise, Lectures on Morse homology, 29, Kluwer Academic Publishers Group (2004) | DOI

[3] J M Franks, Morse–Smale flows and homotopy theory, Topology 18 (1979) 199 | DOI

[4] M Goresky, R Macpherson, Stratified Morse theory, 14, Springer (1988) | DOI

[5] R M Goresky, Triangulation of stratified objects, Proc. Amer. Math. Soc. 72 (1978) 193 | DOI

[6] M Gromov, Volume and bounded cohomology, Inst. Hautes Études Sci. Publ. Math. 56 (1982) 5

[7] M Gromov, Singularities, expanders and topology of maps, I : Homology versus volume in the spaces of cycles, Geom. Funct. Anal. 19 (2009) 743 | DOI

[8] A Hatcher, Algebraic topology, Cambridge Univ. Press (2002)

[9] J F Lafont, B Schmidt, Simplicial volume of closed locally symmetric spaces of non-compact type, Acta Math. 197 (2006) 129 | DOI

[10] L Qin, On moduli spaces and CW structures arising from Morse theory on Hilbert manifolds, J. Topol. Anal. 2 (2010) 469 | DOI

[11] Qin,Lizhen, An application of topological equivalences to Morse theory, preprint (2011)

[12] W P Thurston, The geometry and topology of three-manifolds, lecture notes (1979)

[13] W P Thurston, Hyperbolic structures on 3–manifolds, II : Surface groups and 3–manifolds which fiber over the circle, (1998)

[14] K Wehrheim, Smooth structures on Morse trajectory spaces, featuring finite ends and associative gluing, from: "Proceedings of the Freedman Fest" (editors R Kirby, V Krushkal, Z Wang), Geom. Topol. Monogr. 18 (2012) 369 | DOI

Cité par Sources :