Finite approximations of p–local compact groups
Geometry & topology, Tome 20 (2016) no. 5, pp. 2923-2995.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We show how every p–local compact group can be described as a telescope of p–local finite groups. As a consequence, we deduce several corollaries, such as a stable elements theorem for the mod p cohomology of their classifying spaces, and a generalized Dwyer–Zabrodsky description of certain related mapping spaces.

DOI : 10.2140/gt.2016.20.2923
Classification : 20D20, 55R35, 55R40
Keywords: p-local compact group, p-local finite group, colimit, stable elements, mapping space, classifying space, compact Lie groups

Gonzalez, Alex 1

1 Department of Mathematics, Kansas State University, 138 Cardwell Hall, Manhattan, KS 66506, United States
@article{GT_2016_20_5_a6,
     author = {Gonzalez, Alex},
     title = {Finite approximations of p{\textendash}local compact groups},
     journal = {Geometry & topology},
     pages = {2923--2995},
     publisher = {mathdoc},
     volume = {20},
     number = {5},
     year = {2016},
     doi = {10.2140/gt.2016.20.2923},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2016.20.2923/}
}
TY  - JOUR
AU  - Gonzalez, Alex
TI  - Finite approximations of p–local compact groups
JO  - Geometry & topology
PY  - 2016
SP  - 2923
EP  - 2995
VL  - 20
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2016.20.2923/
DO  - 10.2140/gt.2016.20.2923
ID  - GT_2016_20_5_a6
ER  - 
%0 Journal Article
%A Gonzalez, Alex
%T Finite approximations of p–local compact groups
%J Geometry & topology
%D 2016
%P 2923-2995
%V 20
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2016.20.2923/
%R 10.2140/gt.2016.20.2923
%F GT_2016_20_5_a6
Gonzalez, Alex. Finite approximations of p–local compact groups. Geometry & topology, Tome 20 (2016) no. 5, pp. 2923-2995. doi : 10.2140/gt.2016.20.2923. http://geodesic.mathdoc.fr/articles/10.2140/gt.2016.20.2923/

[1] K K S Andersen, J Grodal, The classification of 2–compact groups, J. Amer. Math. Soc. 22 (2009) 387 | DOI

[2] K K S Andersen, J Grodal, J M Møller, A Viruel, The classification of p–compact groups for p odd, Ann. of Math. 167 (2008) 95 | DOI

[3] A K Bousfield, D M Kan, Homotopy limits, completions and localizations, 304, Springer (1972)

[4] C Broto, N Castellana, J Grodal, R Levi, B Oliver, Subgroup families controlling p–local finite groups, Proc. London Math. Soc. 91 (2005) 325 | DOI

[5] C Broto, N Castellana, J Grodal, R Levi, B Oliver, Extensions of p–local finite groups, Trans. Amer. Math. Soc. 359 (2007) 3791 | DOI

[6] C Broto, R Levi, B Oliver, The homotopy theory of fusion systems, J. Amer. Math. Soc. 16 (2003) 779 | DOI

[7] C Broto, R Levi, B Oliver, Discrete models for the p–local homotopy theory of compact Lie groups and p–compact groups, Geom. Topol. 11 (2007) 315 | DOI

[8] C Broto, R Levi, B Oliver, An algebraic model for finite loop spaces, Algebr. Geom. Topol. 14 (2014) 2915 | DOI

[9] J Cantarero, N Castellana, Unitary embeddings of finite loop spaces, preprint (2013)

[10] H Cartan, S Eilenberg, Homological algebra, Princeton Univ. Press (1956)

[11] N Castellana, A Libman, Wreath products and representations of p–local finite groups, Adv. Math. 221 (2009) 1302 | DOI

[12] A Chermak, Fusion systems and localities, Acta Math. 211 (2013) 47 | DOI

[13] A Díaz, A Libman, The Burnside ring of fusion systems, Adv. Math. 222 (2009) 1943 | DOI

[14] A Díaz, A Libman, Segal’s conjecture and the Burnside rings of fusion systems, J. Lond. Math. Soc. 80 (2009) 665 | DOI

[15] A Díaz Ramos, A spectral sequence for fusion systems, Algebr. Geom. Topol. 14 (2014) 349 | DOI

[16] W G Dwyer, C W Wilkerson, Homotopy fixed-point methods for Lie groups and finite loop spaces, Ann. of Math. 139 (1994) 395 | DOI

[17] W Dwyer, A Zabrodsky, Maps between classifying spaces, from: "Algebraic topology" (editors J Aguadé, R Kane), Lecture Notes in Math. 1298, Springer (1987) 106 | DOI

[18] E D Farjoun, Cellular spaces, null spaces and homotopy localization, 1622, Springer (1996) | DOI

[19] E M Friedlander, G Mislin, Cohomology of classifying spaces of complex Lie groups and related discrete groups, Comment. Math. Helv. 59 (1984) 347 | DOI

[20] E M Friedlander, G Mislin, Locally finite approximation of Lie groups, I, Invent. Math. 83 (1986) 425 | DOI

[21] M Gelvin, S P Reeh, Minimal characteristic bisets for fusion systems, J. Algebra 427 (2015) 345 | DOI

[22] M Gelvin, S P Reeh, E Yalçın, On the basis of the Burnside ring of a fusion system, J. Algebra 423 (2015) 767 | DOI

[23] A González, Unstable Adams operations acting on p–local compact groups and fixed points, Algebr. Geom. Topol. 12 (2012) 867 | DOI

[24] A González, The structure of p–local compact groups of rank 1, Forum Math. 28 (2016) 219 | DOI

[25] D Gorenstein, Finite groups, Chelsea (1980)

[26] F Junod, R Levi, A Libman, Unstable Adams operations on p–local compact groups, Algebr. Geom. Topol. 12 (2012) 49 | DOI

[27] J Lannes, Sur les espaces fonctionnels dont la source est le classifiant d’un p–groupe abélien élémentaire, Inst. Hautes Études Sci. Publ. Math. 75 (1992) 135

[28] R Levi, A Libman, Existence and uniqueness of classifying spaces for fusion systems over discrete p–toral groups, J. Lond. Math. Soc. 91 (2015) 47 | DOI

[29] B Oliver, Existence and uniqueness of linking systems : Chermak’s proof via obstruction theory, Acta Math. 211 (2013) 141 | DOI

[30] B Oliver, J Ventura, Extensions of linking systems with p–group kernel, Math. Ann. 338 (2007) 983 | DOI

[31] D Quillen, Higher algebraic K–theory, I, from: "Algebraic K–theory, I : Higher K–theories" (editor H Bass), Lecture Notes in Math. 341, Springer (1973) 85

[32] K Ragnarsson, R Stancu, Saturated fusion systems as idempotents in the double Burnside ring, Geom. Topol. 17 (2013) 839 | DOI

[33] L Ribes, P Zalesskii, Profinite groups, 40, Springer (2000) | DOI

[34] K Rubin, Euler systems, 147, Princeton Univ. Press (2000) | DOI

[35] R W Thomason, Homotopy colimits in the category of small categories, Math. Proc. Cambridge Philos. Soc. 85 (1979) 91 | DOI

[36] C A Weibel, An introduction to homological algebra, 38, Cambridge Univ. Press (1994) | DOI

Cité par Sources :