Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We show how every –local compact group can be described as a telescope of –local finite groups. As a consequence, we deduce several corollaries, such as a stable elements theorem for the mod cohomology of their classifying spaces, and a generalized Dwyer–Zabrodsky description of certain related mapping spaces.
Gonzalez, Alex 1
@article{GT_2016_20_5_a6, author = {Gonzalez, Alex}, title = {Finite approximations of p{\textendash}local compact groups}, journal = {Geometry & topology}, pages = {2923--2995}, publisher = {mathdoc}, volume = {20}, number = {5}, year = {2016}, doi = {10.2140/gt.2016.20.2923}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2016.20.2923/} }
Gonzalez, Alex. Finite approximations of p–local compact groups. Geometry & topology, Tome 20 (2016) no. 5, pp. 2923-2995. doi : 10.2140/gt.2016.20.2923. http://geodesic.mathdoc.fr/articles/10.2140/gt.2016.20.2923/
[1] The classification of 2–compact groups, J. Amer. Math. Soc. 22 (2009) 387 | DOI
, ,[2] The classification of p–compact groups for p odd, Ann. of Math. 167 (2008) 95 | DOI
, , , ,[3] Homotopy limits, completions and localizations, 304, Springer (1972)
, ,[4] Subgroup families controlling p–local finite groups, Proc. London Math. Soc. 91 (2005) 325 | DOI
, , , , ,[5] Extensions of p–local finite groups, Trans. Amer. Math. Soc. 359 (2007) 3791 | DOI
, , , , ,[6] The homotopy theory of fusion systems, J. Amer. Math. Soc. 16 (2003) 779 | DOI
, , ,[7] Discrete models for the p–local homotopy theory of compact Lie groups and p–compact groups, Geom. Topol. 11 (2007) 315 | DOI
, , ,[8] An algebraic model for finite loop spaces, Algebr. Geom. Topol. 14 (2014) 2915 | DOI
, , ,[9] Unitary embeddings of finite loop spaces, preprint (2013)
, ,[10] Homological algebra, Princeton Univ. Press (1956)
, ,[11] Wreath products and representations of p–local finite groups, Adv. Math. 221 (2009) 1302 | DOI
, ,[12] Fusion systems and localities, Acta Math. 211 (2013) 47 | DOI
,[13] The Burnside ring of fusion systems, Adv. Math. 222 (2009) 1943 | DOI
, ,[14] Segal’s conjecture and the Burnside rings of fusion systems, J. Lond. Math. Soc. 80 (2009) 665 | DOI
, ,[15] A spectral sequence for fusion systems, Algebr. Geom. Topol. 14 (2014) 349 | DOI
,[16] Homotopy fixed-point methods for Lie groups and finite loop spaces, Ann. of Math. 139 (1994) 395 | DOI
, ,[17] Maps between classifying spaces, from: "Algebraic topology" (editors J Aguadé, R Kane), Lecture Notes in Math. 1298, Springer (1987) 106 | DOI
, ,[18] Cellular spaces, null spaces and homotopy localization, 1622, Springer (1996) | DOI
,[19] Cohomology of classifying spaces of complex Lie groups and related discrete groups, Comment. Math. Helv. 59 (1984) 347 | DOI
, ,[20] Locally finite approximation of Lie groups, I, Invent. Math. 83 (1986) 425 | DOI
, ,[21] Minimal characteristic bisets for fusion systems, J. Algebra 427 (2015) 345 | DOI
, ,[22] On the basis of the Burnside ring of a fusion system, J. Algebra 423 (2015) 767 | DOI
, , ,[23] Unstable Adams operations acting on p–local compact groups and fixed points, Algebr. Geom. Topol. 12 (2012) 867 | DOI
,[24] The structure of p–local compact groups of rank 1, Forum Math. 28 (2016) 219 | DOI
,[25] Finite groups, Chelsea (1980)
,[26] Unstable Adams operations on p–local compact groups, Algebr. Geom. Topol. 12 (2012) 49 | DOI
, , ,[27] Sur les espaces fonctionnels dont la source est le classifiant d’un p–groupe abélien élémentaire, Inst. Hautes Études Sci. Publ. Math. 75 (1992) 135
,[28] Existence and uniqueness of classifying spaces for fusion systems over discrete p–toral groups, J. Lond. Math. Soc. 91 (2015) 47 | DOI
, ,[29] Existence and uniqueness of linking systems : Chermak’s proof via obstruction theory, Acta Math. 211 (2013) 141 | DOI
,[30] Extensions of linking systems with p–group kernel, Math. Ann. 338 (2007) 983 | DOI
, ,[31] Higher algebraic K–theory, I, from: "Algebraic K–theory, I : Higher K–theories" (editor H Bass), Lecture Notes in Math. 341, Springer (1973) 85
,[32] Saturated fusion systems as idempotents in the double Burnside ring, Geom. Topol. 17 (2013) 839 | DOI
, ,[33] Profinite groups, 40, Springer (2000) | DOI
, ,[34] Euler systems, 147, Princeton Univ. Press (2000) | DOI
,[35] Homotopy colimits in the category of small categories, Math. Proc. Cambridge Philos. Soc. 85 (1979) 91 | DOI
,[36] An introduction to homological algebra, 38, Cambridge Univ. Press (1994) | DOI
,Cité par Sources :