Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We classify all rank two affine manifolds in strata in genus three with two zeros. This confirms a conjecture of Maryam Mirzakhani in these cases. Several technical results are proven for all strata in genus three, with the hope that they may shed light on a complete classification of rank two manifolds in genus three.
Aulicino, David 1 ; Nguyen, Duc-Manh 2
@article{GT_2016_20_5_a4, author = {Aulicino, David and Nguyen, Duc-Manh}, title = {Rank two affine submanifolds in {\ensuremath{\mathscr{H}}(2,2)} and {\ensuremath{\mathscr{H}}(3,1)}}, journal = {Geometry & topology}, pages = {2837--2904}, publisher = {mathdoc}, volume = {20}, number = {5}, year = {2016}, doi = {10.2140/gt.2016.20.2837}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2016.20.2837/} }
TY - JOUR AU - Aulicino, David AU - Nguyen, Duc-Manh TI - Rank two affine submanifolds in ℋ(2,2) and ℋ(3,1) JO - Geometry & topology PY - 2016 SP - 2837 EP - 2904 VL - 20 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2016.20.2837/ DO - 10.2140/gt.2016.20.2837 ID - GT_2016_20_5_a4 ER -
Aulicino, David; Nguyen, Duc-Manh. Rank two affine submanifolds in ℋ(2,2) and ℋ(3,1). Geometry & topology, Tome 20 (2016) no. 5, pp. 2837-2904. doi : 10.2140/gt.2016.20.2837. http://geodesic.mathdoc.fr/articles/10.2140/gt.2016.20.2837/
[1] Affine invariant submanifolds with completely degenerate Kontsevich–Zorich spectrum, Ergodic Theory Dynam. Systems (2016) | DOI
,[2] Classification of higher rank orbit closures in Hodd(4), J. Eur. Math. Soc. (JEMS) 18 (2016) 1855 | DOI
, , ,[3] Symplectic and isometric SL(2, R)–invariant subbundles of the Hodge bundle, preprint (2012)
, , ,[4] Moduli spaces of abelian differentials : the principal boundary, counting problems, and the Siegel–Veech constants, Publ. Math. Inst. Hautes Études Sci. 97 (2003) 61 | DOI
, , ,[5] Invariant and stationary measures for the SL(2, R) action on moduli space, preprint (2013)
, ,[6] Isolation, equidistribution, and orbit closures for the SL(2, R) action on moduli space, Ann. of Math. 182 (2015) 673 | DOI
, , ,[7] Semisimplicity and rigidity of the Kontsevich–Zorich cocycle, Invent. Math. 205 (2016) 617 | DOI
,[8] Splitting mixed Hodge structures over affine invariant manifolds, Ann. of Math. 183 (2016) 681 | DOI
,[9] Intersection theory on the moduli space of curves and the matrix Airy function, Comm. Math. Phys. 147 (1992) 1
,[10] Connected components of the moduli spaces of abelian differentials with prescribed singularities, Invent. Math. 153 (2003) 631 | DOI
, ,[11] Connected components of the strata of the moduli spaces of quadratic differentials, Ann. Sci. Éc. Norm. Supér. 41 (2008) 1
,[12] Dynamics of SL2(R) over moduli space in genus two, Ann. of Math. 165 (2007) 397 | DOI
,[13] The boundary of an affine invariant submanifold, preprint (2015)
, ,[14] On the topology of H(2), Groups Geom. Dyn. 8 (2014) 513 | DOI
,[15] Non-Veech surfaces in Hhyp(4) are generic, Geom. Funct. Anal. 24 (2014) 1316 | DOI
, ,[16] Minimal sets for flows on moduli space, Israel J. Math. 142 (2004) 249 | DOI
, ,[17] The field of definition of affine invariant submanifolds of the moduli space of abelian differentials, Geom. Topol. 18 (2014) 1323 | DOI
,[18] Cylinder deformations in orbit closures of translation surfaces, Geom. Topol. 19 (2015) 413 | DOI
,Cité par Sources :