Rank two affine submanifolds in ℋ(2,2) and ℋ(3,1)
Geometry & topology, Tome 20 (2016) no. 5, pp. 2837-2904.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We classify all rank two affine manifolds in strata in genus three with two zeros. This confirms a conjecture of Maryam Mirzakhani in these cases. Several technical results are proven for all strata in genus three, with the hope that they may shed light on a complete classification of rank two manifolds in genus three.

DOI : 10.2140/gt.2016.20.2837
Classification : 32G15, 14H10
Keywords: translation surfaces, $\mathrm{GL}(2, \mathbb{R})$, orbit closure, moduli space of abelian differentials

Aulicino, David 1 ; Nguyen, Duc-Manh 2

1 Department of Mathematics, University of Chicago, 5734 University Avenue, Chicago, IL 60637, United States
2 University of Bordeaux, Bat. A33, IMB, CNRS UMR 5251, 351, cours de la Libération, F-33405 Talence, France
@article{GT_2016_20_5_a4,
     author = {Aulicino, David and Nguyen, Duc-Manh},
     title = {Rank two affine submanifolds in {\ensuremath{\mathscr{H}}(2,2)} and {\ensuremath{\mathscr{H}}(3,1)}},
     journal = {Geometry & topology},
     pages = {2837--2904},
     publisher = {mathdoc},
     volume = {20},
     number = {5},
     year = {2016},
     doi = {10.2140/gt.2016.20.2837},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2016.20.2837/}
}
TY  - JOUR
AU  - Aulicino, David
AU  - Nguyen, Duc-Manh
TI  - Rank two affine submanifolds in ℋ(2,2) and ℋ(3,1)
JO  - Geometry & topology
PY  - 2016
SP  - 2837
EP  - 2904
VL  - 20
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2016.20.2837/
DO  - 10.2140/gt.2016.20.2837
ID  - GT_2016_20_5_a4
ER  - 
%0 Journal Article
%A Aulicino, David
%A Nguyen, Duc-Manh
%T Rank two affine submanifolds in ℋ(2,2) and ℋ(3,1)
%J Geometry & topology
%D 2016
%P 2837-2904
%V 20
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2016.20.2837/
%R 10.2140/gt.2016.20.2837
%F GT_2016_20_5_a4
Aulicino, David; Nguyen, Duc-Manh. Rank two affine submanifolds in ℋ(2,2) and ℋ(3,1). Geometry & topology, Tome 20 (2016) no. 5, pp. 2837-2904. doi : 10.2140/gt.2016.20.2837. http://geodesic.mathdoc.fr/articles/10.2140/gt.2016.20.2837/

[1] D Aulicino, Affine invariant submanifolds with completely degenerate Kontsevich–Zorich spectrum, Ergodic Theory Dynam. Systems (2016) | DOI

[2] D Aulicino, D M Nguyen, A Wright, Classification of higher rank orbit closures in Hodd(4), J. Eur. Math. Soc. (JEMS) 18 (2016) 1855 | DOI

[3] A Avila, A Eskin, M Moeller, Symplectic and isometric SL(2, R)–invariant subbundles of the Hodge bundle, preprint (2012)

[4] A Eskin, H Masur, A Zorich, Moduli spaces of abelian differentials : the principal boundary, counting problems, and the Siegel–Veech constants, Publ. Math. Inst. Hautes Études Sci. 97 (2003) 61 | DOI

[5] A Eskin, M Mirzakhani, Invariant and stationary measures for the SL(2, R) action on moduli space, preprint (2013)

[6] A Eskin, M Mirzakhani, A Mohammadi, Isolation, equidistribution, and orbit closures for the SL(2, R) action on moduli space, Ann. of Math. 182 (2015) 673 | DOI

[7] S Filip, Semisimplicity and rigidity of the Kontsevich–Zorich cocycle, Invent. Math. 205 (2016) 617 | DOI

[8] S Filip, Splitting mixed Hodge structures over affine invariant manifolds, Ann. of Math. 183 (2016) 681 | DOI

[9] M Kontsevich, Intersection theory on the moduli space of curves and the matrix Airy function, Comm. Math. Phys. 147 (1992) 1

[10] M Kontsevich, A Zorich, Connected components of the moduli spaces of abelian differentials with prescribed singularities, Invent. Math. 153 (2003) 631 | DOI

[11] E Lanneau, Connected components of the strata of the moduli spaces of quadratic differentials, Ann. Sci. Éc. Norm. Supér. 41 (2008) 1

[12] C T Mcmullen, Dynamics of SL2(R) over moduli space in genus two, Ann. of Math. 165 (2007) 397 | DOI

[13] M Mirzakhani, A Wright, The boundary of an affine invariant submanifold, preprint (2015)

[14] D M Nguyen, On the topology of H(2), Groups Geom. Dyn. 8 (2014) 513 | DOI

[15] D M Nguyen, A Wright, Non-Veech surfaces in Hhyp(4) are generic, Geom. Funct. Anal. 24 (2014) 1316 | DOI

[16] J Smillie, B Weiss, Minimal sets for flows on moduli space, Israel J. Math. 142 (2004) 249 | DOI

[17] A Wright, The field of definition of affine invariant submanifolds of the moduli space of abelian differentials, Geom. Topol. 18 (2014) 1323 | DOI

[18] A Wright, Cylinder deformations in orbit closures of translation surfaces, Geom. Topol. 19 (2015) 413 | DOI

Cité par Sources :