Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
In this paper we prove new classification results for nonnegatively curved gradient expanding and steady Ricci solitons in dimension three and above, under suitable integral assumptions on the scalar curvature of the underlying Riemannian manifold. In particular we show that the only complete expanding solitons with nonnegative sectional curvature and integrable scalar curvature are quotients of the Gaussian soliton, while in the steady case we prove rigidity results under sharp integral scalar curvature decay. As a corollary, we obtain that the only three-dimensional steady solitons with less than quadratic volume growth are quotients of or of , where is Hamilton’s cigar.
Catino, Giovanni 1 ; Mastrolia, Paolo 2 ; Monticelli, Dario 3
@article{GT_2016_20_5_a2, author = {Catino, Giovanni and Mastrolia, Paolo and Monticelli, Dario}, title = {Classification of expanding and steady {Ricci} solitons with integral curvature decay}, journal = {Geometry & topology}, pages = {2665--2685}, publisher = {mathdoc}, volume = {20}, number = {5}, year = {2016}, doi = {10.2140/gt.2016.20.2665}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2016.20.2665/} }
TY - JOUR AU - Catino, Giovanni AU - Mastrolia, Paolo AU - Monticelli, Dario TI - Classification of expanding and steady Ricci solitons with integral curvature decay JO - Geometry & topology PY - 2016 SP - 2665 EP - 2685 VL - 20 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2016.20.2665/ DO - 10.2140/gt.2016.20.2665 ID - GT_2016_20_5_a2 ER -
%0 Journal Article %A Catino, Giovanni %A Mastrolia, Paolo %A Monticelli, Dario %T Classification of expanding and steady Ricci solitons with integral curvature decay %J Geometry & topology %D 2016 %P 2665-2685 %V 20 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2016.20.2665/ %R 10.2140/gt.2016.20.2665 %F GT_2016_20_5_a2
Catino, Giovanni; Mastrolia, Paolo; Monticelli, Dario. Classification of expanding and steady Ricci solitons with integral curvature decay. Geometry & topology, Tome 20 (2016) no. 5, pp. 2665-2685. doi : 10.2140/gt.2016.20.2665. http://geodesic.mathdoc.fr/articles/10.2140/gt.2016.20.2665/
[1] Real analyticity of solutions of Hamilton’s equation, Math. Z. 195 (1987) 93 | DOI
,[2] Two-dimensional gradient Ricci solitons revisited, Int. Math. Res. Not. 2015 (2015) 78 | DOI
, ,[3] Curvature operators: pinching estimates and geometric examples, Ann. Sci. École Norm. Sup. 11 (1978) 71
, ,[4] Rotational symmetry of self-similar solutions to the Ricci flow, Invent. Math. 194 (2013) 731 | DOI
,[5] Ricci flow solitons in dimension three with SO(3)–symmetries, preprint (2005)
,[6] Bach-flat gradient steady Ricci solitons, Calc. Var. Partial Differential Equations 49 (2014) 125 | DOI
, , , , ,[7] Recent developments on Hamilton’s Ricci flow, from: "Surveys in differential geometry, XII : Geometric flows" (editors H D Cao, S T Yau), Surv. Differ. Geom. 12, International Press (2008) 47 | DOI
, , ,[8] Infinitesimal rigidity of collapsed gradient steady Ricci solitons in dimension three, preprint (2014)
, ,[9] Complete gradient shrinking Ricci solitons with pinched curvature, Math. Ann. 355 (2013) 629 | DOI
,[10] Some rigidity results on critical metrics for quadratic functionals, Calc. Var. Partial Differential Equations 54 (2015) 2921 | DOI
,[11] A note on Codazzi tensors, Math. Ann. 362 (2015) 629 | DOI
, , ,[12] Analytic and geometric properties of generic Ricci solitons, Trans. Amer. Math. Soc. 368 (2016) 7533 | DOI
, , , ,[13] Rigidity of gradient Einstein shrinkers, Commun. Contemp. Math. 17 (2015) 1550046, 18 | DOI
, , ,[14] Strong uniqueness of the Ricci flow, J. Differential Geom. 82 (2009) 363
,[15] Structure at infinity of expanding gradient Ricci soliton, Asian J. Math. 19 (2015) 933 | DOI
, ,[16] Expanding Ricci solitons asymptotic to cones, Calc. Var. Partial Differential Equations 51 (2014) 1 | DOI
,[17] Hamilton’s Ricci flow, 77, Amer. Math. Soc. (2006) | DOI
, , ,[18] Steady gradient Ricci soliton with curvature in L1, Comm. Anal. Geom. 20 (2012) 31 | DOI
,[19] Asymptotic estimates and compactness of expanding gradient Ricci solitons, preprint (2014)
,[20] Ricci solitons: the equation point of view, Manuscripta Math. 127 (2008) 345 | DOI
, , ,[21] Three-manifolds with positive Ricci curvature, J. Differential Geom. 17 (1982) 255
,[22] The Ricci flow on surfaces, from: "Mathematics and general relativity" (editor J A Isenberg), Contemp. Math. 71, Amer. Math. Soc. (1988) 237 | DOI
,[23] The formation of singularities in the Ricci flow, from: "Surveys in differential geometry" (editor S T Yau), Int. Press (1995) 7
,[24] Ricci solitons on compact three-manifolds, Differential Geom. Appl. 3 (1993) 301 | DOI
,[25] Foundations of differential geometry, I, John Wiley Sons (1963)
, ,[26] Expanding Ricci solitons with pinched Ricci curvature, Kodai Math. J. 34 (2011) 140 | DOI
,[27] Some geometric analysis on generic Ricci solitons, Commun. Contemp. Math. 15 (2013) 1250058, 25 | DOI
, , ,[28] Geometry of shrinking Ricci solitons, Compos. Math. 151 (2015) 2273 | DOI
, ,[29] On a classification of gradient shrinking solitons, Math. Res. Lett. 15 (2008) 941 | DOI
, ,[30] The entropy formula for the Ricci flow and its geometric applications, preprint (2002)
,[31] Rigidity of gradient Ricci solitons, Pacific J. Math. 241 (2009) 329 | DOI
, ,[32] On the classification of gradient Ricci solitons, Geom. Topol. 14 (2010) 2277 | DOI
, ,[33] Remarks on non-compact gradient Ricci solitons, Math. Z. 268 (2011) 777 | DOI
, , ,[34] Expanding solitons with non-negative curvature operator coming out of cones, Math. Z. 275 (2013) 625 | DOI
, ,[35] Heat kernel on smooth metric measure spaces with nonnegative curvature, Math. Ann. 362 (2015) 717 | DOI
, ,[36] Gradient shrinking Ricci solitons of half harmonic Weyl curvature, preprint (2014)
, , ,Cité par Sources :