Derived functors of the divided power functors
Geometry & topology, Tome 20 (2016) no. 1, pp. 257-352.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We study the derived functors of the components Γd(A) of the divided power algebra Γ(A) associated to an abelian group A, with special emphasis on the d = 4 case. While our results have applications both to representation theory and to algebraic topology, we illustrate them here by providing a new functorial description of certain integral homology groups of the Eilenberg–Mac Lane spaces K(A,n) for A a free abelian group. In particular, we give a complete functorial description of the groups H(K(A,3); ) for such A.

DOI : 10.2140/gt.2016.20.257
Classification : 18G55, 55P20
Keywords: strict polynomial functors, derived functors of non-additive functors, Eilenberg–Mac Lane spaces

Breen, Lawrence 1 ; Mikhailov, Roman 2 ; Touzé, Antoine 3

1 LAGA, CNRS (UMR 7539), Université Paris 13, 99, avenue Jean-Baptiste Clément, F-93430 Villetaneuse, France
2 Chebyshev Laboratory, St Petersburg State University, St Petersburg Department of Steklov Mathematical Institute, 14th Line, 29b, Saint Petersburg, 199178, Russia
3 Laboratoiré Paul Painlevé, CNRS (UMR 8524), Université Lille 1, F-59000 Lille, France
@article{GT_2016_20_1_a3,
     author = {Breen, Lawrence and Mikhailov, Roman and Touz\'e, Antoine},
     title = {Derived functors of the divided power functors},
     journal = {Geometry & topology},
     pages = {257--352},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2016},
     doi = {10.2140/gt.2016.20.257},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2016.20.257/}
}
TY  - JOUR
AU  - Breen, Lawrence
AU  - Mikhailov, Roman
AU  - Touzé, Antoine
TI  - Derived functors of the divided power functors
JO  - Geometry & topology
PY  - 2016
SP  - 257
EP  - 352
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2016.20.257/
DO  - 10.2140/gt.2016.20.257
ID  - GT_2016_20_1_a3
ER  - 
%0 Journal Article
%A Breen, Lawrence
%A Mikhailov, Roman
%A Touzé, Antoine
%T Derived functors of the divided power functors
%J Geometry & topology
%D 2016
%P 257-352
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2016.20.257/
%R 10.2140/gt.2016.20.257
%F GT_2016_20_1_a3
Breen, Lawrence; Mikhailov, Roman; Touzé, Antoine. Derived functors of the divided power functors. Geometry & topology, Tome 20 (2016) no. 1, pp. 257-352. doi : 10.2140/gt.2016.20.257. http://geodesic.mathdoc.fr/articles/10.2140/gt.2016.20.257/

[1] K Akin, D A Buchsbaum, J Weyman, Schur functors and Schur complexes, Adv. in Math. 44 (1982) 207

[2] H J Baues, T Pirashvili, A universal coefficient theorem for quadratic functors, J. Pure Appl. Algebra 148 (2000) 1

[3] S Betley, Stable derived functors, the Steenrod algebra and homological algebra in the category of functors, Fund. Math. 168 (2001) 279

[4] G Boffi, D A Buchsbaum, Threading homology through algebra: Selected patterns, Oxford Univ. Press (2006)

[5] A K Bousfield, Homogeneous functors and their derived functors, unpublished (1967)

[6] A K Bousfield, Operations on derived functors of nonadditive functors, unpublished (1967)

[7] L Breen, On the functorial homology of abelian groups, J. Pure Appl. Algebra 142 (1999) 199

[8] L Breen, R Mikhailov, Derived functors of nonadditive functors and homotopy theory, Algebr. Geom. Topol. 11 (2011) 327

[9] H Cartan, Algèbres d’Eilenberg–Mac Lane et homotopie, 7-1, Secrétariat mathématique (1955)

[10] G J Decker, The integral homology algebra of an Eilenberg–Mac Lane space, PhD thesis, University of Chicago (1974)

[11] A Dold, D Puppe, Homologie nicht-additiver Funktoren : Anwendungen, Ann. Inst. Fourier Grenoble 11 (1961) 201

[12] S Eilenberg, S Mac Lane, On the groups H(Π,n), II : Methods of computation, Ann. of Math. 60 (1954) 49

[13] V Franjou, E M Friedlander, A Scorichenko, A Suslin, General linear and functor cohomology over finite fields, Ann. of Math. 150 (1999) 663

[14] E M Friedlander, A Suslin, Cohomology of finite group schemes over a field, Invent. Math. 127 (1997) 209

[15] R M Hamsher, Eilenberg–Maclane algebras and their computation : An invariant description of H(Π,1), PhD thesis, University of Chicago (1973)

[16] L Illusie, Complexe cotangent et déformations, I, 239, Springer (1971)

[17] L Illusie, Complexe cotangent et déformations, II, 283, Springer (1972)

[18] F Jean, Foncteurs dérivés de l’algèbre symétrique : application au calcul de certains groupes d’homologie fonctorielle des espaces K(B,n), PhD thesis, Université Paris 13 (2002)

[19] H Krause, Koszul, Ringel and Serre duality for strict polynomial functors, Compos. Math. 149 (2013) 996

[20] S Mac Lane, Homology, 114, Springer (1963)

[21] R Mikhailov, On the splitting of polynomial functors, preprint (2012)

[22] T I Pirashvili, Higher additivizations, Trudy Tbiliss. Mat. Inst. Razmadze Akad. Nauk Gruzin. SSR 91 (1988) 44

[23] T Pirashvili, Introduction to functor homology, from: "Rational representations, the Steenrod algebra and functor homology", Panor. Synthèses 16, Soc. Math. France, Paris (2003) 1

[24] D G Quillen, Homotopical algebra, 43, Springer (1967)

[25] D Quillen, On the (co-) homology of commutative rings, from: "Applications of categorical algebra" (editor A Heller), Proc. Sympos. Pure Math. 17, Amer. Math. Soc. (1970) 65

[26] N Roby, Lois polynomes et lois formelles en théorie des modules, Ann. Sci. École Norm. Sup. 80 (1963) 213

[27] A Touzé, Troesch complexes and extensions of strict polynomial functors, Ann. Sci. Éc. Norm. Supér. 45 (2012) 53

[28] A Touzé, Ringel duality and derivatives of non-additive functors, J. Pure Appl. Algebra 217 (2013) 1642

[29] A Touzé, Bar complexes and extensions of classical exponential functors, Ann. Inst. Fourier (Grenoble) 64 (2014) 2563

[30] C A Weibel, An introduction to homological algebra, 38, Cambridge Univ. Press (1994)

Cité par Sources :